
Simulink®

Modeling Guidelines for
High-Integrity Systems

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Modeling Guidelines for High-Integrity Systems
© COPYRIGHT 2009–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2009 Online only New for Version 1.0 (Release 2009b)
April 2010 Online only Revised for Version 1.1 (Release 2010a)
September 2010 Online only Revised for Version 1.2 (Release 2010b)
April 2011 Online only Revised for Version 1.3 (Release 2011a)
September 2011 Online only Revised for Version 1.4 (Release 2011b)
March 2012 Online only Revised for Version 1.5 (Release 2012a)
September 2012 Online only Revised for Version 1.6 (Release 2012b)
March 2013 Online only Revised for Version 1.7 (Release 2013a)
September 2013 Online only Revised for Version 1.8 (Release 2013b)
March 2014 Online only Revised for Version 1.9 (Release 2014a)

Contents

Introduction

1
Motivation . 1-2

Guideline Template . 1-4

Model Advisor Checks for High-Integrity Modeling
Guidelines . 1-5

Simulink Block Considerations

2
Math Operations . 2-2
hisl_0001: Usage of Abs block . 2-3
hisl_0002: Usage of Math Function blocks (rem and
reciprocal) . 2-5

hisl_0003: Usage of Square Root blocks 2-7
hisl_0028: Usage of Reciprocal Square Root blocks 2-8
hisl_0004: Usage of Math Function blocks (natural
logarithm and base 10 logarithm) 2-10

hisl_0005: Usage of Product blocks 2-13
hisl_0029: Usage of Assignment blocks 2-15

Ports & Subsystems . 2-19
hisl_0006: Usage of While Iterator blocks 2-20
hisl_0007: Usage of While Iterator subsystems 2-22
hisl_0008: Usage of For Iterator Blocks 2-25
hisl_0009: Usage of For Iterator Subsystem blocks 2-27
hisl_0010: Usage of If blocks and If Action Subsystem
blocks . 2-28

hisl_0011: Usage of Switch Case blocks and Action
Subsystem blocks . 2-30

hisl_0012: Usage of conditionally executed subsystems . . . 2-32

v

hisl_0024: Inport interface definition 2-34
hisl_0025: Design min/max specification of input
interfaces . 2-35

hisl_0026: Design min/max specification of output
interfaces . 2-37

Signal Routing . 2-39
hisl_0013: Usage of data store blocks 2-40
hisl_0015: Usage of Merge blocks . 2-43
hisl_0021: Consistent vector indexing method 2-45
hisl_0022: Data type selection for index signals 2-46
hisl_0023: Verification of model and subsystem variants . . 2-47

Logic and Bit Operations . 2-48
hisl_0016: Usage of blocks that compute relational
operators . 2-49

hisl_0017: Usage of blocks that compute relational
operators (2) . 2-51

hisl_0018: Usage of Logical Operator block 2-52
hisl_0019: Usage of Bitwise Operator block 2-53

Stateflow Chart Considerations

3
Chart Properties . 3-2
hisf_0001: Mealy and Moore semantics 3-3
hisf_0002: User-specified state/transition execution
order . 3-5

hisf_0009: Strong data typing (Simulink and Stateflow
boundary) . 3-7

hisf_0011: Stateflow debugging settings 3-9

Chart Architecture . 3-11
hisf_0003: Usage of bitwise operations 3-12
hisf_0004: Usage of recursive behavior 3-13
hisf_0007: Usage of junction conditions (maintaining
mutual exclusion) . 3-15

hisf_0010: Usage of transition paths (looping out of parent
of source and destination objects) 3-16

vi Contents

hisf_0012: Chart comments . 3-18
hisf_0013: Usage of transition paths (crossing parallel state
boundaries) . 3-19

hisf_0014: Usage of transition paths (passing through
states) . 3-21

hisf_0015: Strong data typing (casting variables and
parameters in expressions) . 3-22

MATLAB Function and MATLAB Code
Considerations

4
MATLAB Functions . 4-2
himl_0001: Usage of standardized MATLAB function
headers . 4-3

himl_0002: Strong data typing at MATLAB function
boundaries . 4-4

himl_0003: Limitation of MATLAB function complexity . . 4-6
himl_0005: Usage of global variables in MATLAB
functions . 4-8

MATLAB Code . 4-11
himl_0004: MATLAB Code Analyzer recommendations for
code generation . 4-11

himl_0006: MATLAB code if / elseif / else patterns 4-15
himl_0007: MATLAB code switch / case / otherwise
patterns . 4-17

himl_0008: MATLAB code relational operator data
types . 4-20

himl_0009: MATLAB code with equal / not equal relational
operators . 4-22

himl_0010: MATLAB code with logical operators and
functions . 4-24

vii

Configuration Parameter Considerations

5
Solver . 5-2
hisl_0040: Configuration Parameters > Solver > Simulation
time . 5-3

hisl_0041: Configuration Parameters > Solver > Solver
options . 5-4

hisl_0042: Configuration Parameters > Solver > Tasking
and sample time options . 5-5

Diagnostics . 5-7
hisl_0043: Configuration Parameters > Diagnostics >
Solver . 5-8

hisl_0044: Configuration Parameters > Diagnostics >
Sample Time . 5-10

hisl_0301: Configuration Parameters > Diagnostics >
Compatibility . 5-13

hisl_0302: Configuration Parameters > Diagnostics > Data
Validity > Parameters . 5-14

hisl_0303: Configuration Parameters > Diagnostics > Data
Validity > Merge block . 5-15

hisl_0304: Configuration Parameters > Diagnostics > Data
Validity > Model Initialization . 5-16

hisl_0305: Configuration Parameters > Diagnostics > Data
Validity > Debugging . 5-17

hisl_0306: Configuration Parameters > Diagnostics >
Connectivity > Signals . 5-18

hisl_0307: Configuration Parameters > Diagnostics >
Connectivity > Buses . 5-19

hisl_0308: Configuration Parameters > Diagnostics >
Connectivity > Function calls . 5-20

hisl_0309: Configuration Parameters > Diagnostics > Type
Conversion . 5-21

hisl_0310: Configuration Parameters > Diagnostics > Model
Referencing . 5-22

hisl_0311: Configuration Parameters > Diagnostics >
Stateflow . 5-23

Optimizations . 5-24
hisl_0045: Configuration Parameters > Optimization >
Implement logic signals as Boolean data (vs. double) . . 5-25

viii Contents

hisl_0046: Configuration Parameters > Optimization >
Block reduction . 5-26

hisl_0048: Configuration Parameters > Optimization >
Application lifespan (days) . 5-27

hisl_0051: Configuration Parameters > Optimization >
Signals and Parameters > Loop unrolling threshold . . . 5-28

hisl_0052: Configuration Parameters > Optimization >
Data initialization . 5-29

hisl_0053: Configuration Parameters > Optimization >
Remove code from floating-point to integer conversions
that wraps out-of-range values . 5-30

hisl_0054: Configuration Parameters > Optimization >
Remove code that protects against division arithmetic
exceptions . 5-31

hisl_0055: Prioritization of code generation objectives for
high-integrity systems . 5-32

MISRA-C:2004 Compliance Considerations

6
Modeling Style . 6-2
hisl_0061: Unique identifiers for clarity 6-3
hisl_0062: Global variables in graphical functions 6-6
hisl_0063: Length of user-defined function names to
improve MISRA-C:2004 compliance 6-9

hisl_0064: Length of user-defined type object names to
improve MISRA-C:2004 compliance 6-10

hisl_0065: Length of signal and parameter names to
improve MISRA-C:2004 compliance 6-11

hisl_0201: Define reserved keywords to improve
MISRA-C:2004 compliance . 6-12

hisl_0202: Use of data conversion blocks to improve
MISRA-C:2004 compliance . 6-13

Block Usage . 6-17
hisl_0020: Blocks not recommended for MISRA-C:2004
compliance . 6-17

hisl_0101: Avoid invariant comparison operations to
improve MISRA-C:2004 compliance 6-18

ix

hisl_0102: Data type of loop control variables to improve
MISRA-C:2004 compliance . 6-21

Configuration Settings . 6-22
hisl_0060: Configuration parameters that improve
MISRA-C:2004 compliance . 6-22

hisl_0312: Specify target specific configuration parameters
to improve MISRA-C:2004 compliance 6-24

hisl_0313: Selection of bitfield data types to improve
MISRA-C:2004 compliance . 6-25

Stateflow Chart Considerations . 6-26
hisf_0064: Shift operations for Stateflow data to improve
MISRA-C:2004 compliance . 6-27

hisf_0065: Type cast operations in Stateflow to improve
MISRA-C:2004 compliance . 6-29

hisf_0211: Protect against use of unary operators
in Stateflow Charts to improve MISRA-C:2004
compliance . 6-31

hisf_0212: Data type of Stateflow for loop control variables
to improve MISRA-C: 2004 compliance 6-33

hisf_0213: Protect against divide-by-zero calculations
in Stateflow charts to improve MISRA-C: 2004
compliance . 6-34

System Level . 6-37
hisl_0401: Encapsulation of code to improve MISRA-C:2004
compliance . 6-37

hisl_0402: Use of custom #pragma to improve
MISRA-C:2004 compliance . 6-38

hisl_0403: Use of char data type improve MISRA-C:2004
compliance . 6-39

x Contents

1

Introduction

• “Motivation” on page 1-2

• “Guideline Template” on page 1-4

• “Model Advisor Checks for High-Integrity Modeling Guidelines” on page 1-5

1 Introduction

Motivation
MathWorks® intends this document for engineers developing models and
generating code for high-integrity systems using Model-Based Design
with MathWorks products. This document describes creating Simulink®

models that are complete, unambiguous, statically deterministic , robust,
and verifiable. The document focus is on model settings, block usage, and
block parameters that impact simulation behavior or code generated by the
Embedded Coder® product.

These guidelines do not assume that you use a particular safety or certification
standard. The guidelines reference some safety standards where applicable,
including:

• DO-178C / DO-331

• IEC 61508

• ISO 26262

• EN 50128

• MISRA C®

Guidelines in this document might also be applicable to related standards,
including IEC 62304, and DO-254.

You can use the Model Advisor to support adhering to these guidelines. Each
guideline lists the checks that are applicable to that guideline, or to parts
of that guideline.

This document does not address model style or development processes. For
more information about creating models in a way that improves consistency,
clarity, and readability, see the “MAAB Control Algorithm Modeling”
guidelines. Development process guidance and additional information for
specific standards is available with the IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178 and DO-254) products.

1-2

http://www.mathworks.com/industries/aerospace/standards/do-178c.html
http://www.mathworks.com/industries/auto/standards/iec-61508.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/industries/aerospace/standards/misra-c.html
http://www.mathworks.com/aerospace-defense/standards/do-254.html

Motivation

Disclaimer While adhering to the recommendations in this document will
reduce the risk that an error is introduced during development and not be
detected, it is not a guarantee that the system being developed will be safe.
Conversely, if some of the recommendations in this document are not followed,
it does not mean that the system being developed will be unsafe.

1-3

1 Introduction

Guideline Template
Guideline descriptions are documented, using the following template.
Companies that want to create additional guidelines are encouraged to use
the same template.

ID: Title XX_nnnn: Title of the guideline (unique, short)

Description Description of the guideline

Prerequisites Links to guidelines that are prerequisites to this guideline
(ID: Title)

Notes Notes for using the guideline

Rationale Rational for providing the guideline

Model
Advisor
Check

Title of and link to the corresponding Model Advisor check,
if a check exists

References References to standards that apply to guideline

See Also Links to additional information

Last
Changed

Version number of last change

Examples Guideline examples

1-4

Model Advisor Checks for High-Integrity Modeling Guidelines

Model Advisor Checks for High-Integrity Modeling
Guidelines

Simulink Verification and Validation™ includes Model Advisor checks for
compliance with safety standards referenced in the high-integrity guidelines,
including:

• DO-178C / DO-331

• IEC 61508

• ISO 26262

• EN 50128

The high-integrity guidelines and corresponding Model Advisor checks are
summarized in the following table. Not all guidelines have Model Advisor
checks. For some of the guidelines without Model Advisor checks, it is
not possible to automate checking of the guideline. Guidelines without
a corresponding check are noted as not applicable. For information on
using the Model Advisor, see “Consult the Model Advisor” in the Simulink
documentation.

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0001: Usage of Abs
block”

• Modeling Standards for
DO-178C/DO-331 > “Check usage
of Math Operations blocks”

• Modeling Standards for
IEC-61508 > “Check usage of Math
Operations blocks”

• Modeling Standards for EN
50128 > “Check usage of Math
Operations blocks”

1-5

http://www.mathworks.com/industries/aerospace/standards/do-178c.html
http://www.mathworks.com/industries/auto/standards/iec-61508.html
http://www.mathworks.com/automotive/standards/iso-26262.html

1 Introduction

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

• Modeling Standards for
ISO-26262 > “Check usage of Math
Operations blocks”

“hisl_0002: Usage of Math
Function blocks (rem and
reciprocal)”

Modeling Standards for
DO-178C/DO-331 > “Check usage of
Math Operations blocks”

“hisl_0003: Usage of Square
Root blocks”

Not applicable

“hisl_0028: Usage of
Reciprocal Square Root
blocks”

Not applicable

“hisl_0004: Usage of Math
Function blocks (natural
logarithm and base 10
logarithm)”

Modeling Standards for
DO-178C/DO-331 > “Check usage of
Math Operations blocks”

“hisl_0005: Usage of
Product blocks”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for signal data”“hisl_0029: Usage of

Assignment blocks”
• Modeling Standards for
DO-178C/DO-331 > “Check usage
of Math Operations blocks”

• Modeling Standards for
IEC-61508 > “Check usage of Math
Operations blocks”

• Modeling Standards for EN
50128 > “Check usage of Math
Operations blocks”

• Modeling Standards for
ISO-26262 > “Check usage of Math
Operations blocks”

1-6

Model Advisor Checks for High-Integrity Modeling Guidelines

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0006: Usage of While
Iterator blocks”

• Modeling Standards for IEC 61508 >
“Check usage of Ports and Subsystems
blocks”

• Modeling Standards for ISO 26262 >
“Check usage of Ports and Subsystems
blocks”

• Modeling Standards for EN 50128 >
“Check usage of Ports and Subsystems
blocks”

• Modeling Standards for
DO-178C/DO-331 > “Check usage
of Ports and Subsystems blocks”

“hisl_0007: Usage of While
Iterator subsystems”

• Modeling Standards for IEC 61508 >
“Check usage of Ports and Subsystems
blocks”

• Modeling Standards for ISO 26262 >
“Check usage of Ports and Subsystems
blocks”

• Modeling Standards for EN 50128 >
“Check usage of Ports and Subsystems
blocks”

• Modeling Standards for
DO-178C/DO-331 > “Check usage
of Ports and Subsystems blocks”

1-7

1 Introduction

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0008: Usage of For
Iterator Blocks”

• Modeling Standards for IEC
61508 > “Check usage of Ports and
Subsystems blocks”

• Modeling Standards for ISO
26262 > “Check usage of Ports and
Subsystems blocks”

• Modeling Standards for EN
50128 > “Check usage of Ports
and Subsystems blocks”

• Modeling Standards for
DO-178C/DO-331 > “Check usage
of Ports and Subsystems blocks”

“hisl_0009: Usage of For
Iterator Subsystem blocks”

• Modeling Standards for IEC
61508 > “Check usage of Ports and
Subsystems blocks”

• Modeling Standards for ISO
26262 > “Check usage of Ports and
Subsystems blocks”

• Modeling Standards for EN
50128 > “Check usage of Ports
and Subsystems blocks”

• Modeling Standards for
DO-178C/DO-331 > “Check usage
of Ports and Subsystems blocks”

“hisl_0010: Usage of
If blocks and If Action
Subsystem blocks”

Not applicable

“hisl_0011: Usage of Switch
Case blocks and Action
Subsystem blocks”

Not applicable

1-8

Model Advisor Checks for High-Integrity Modeling Guidelines

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0012: Usage of
conditionally executed
subsystems”

Not applicable

“hisl_0024: Inport interface
definition”

• Modeling Standards for IEC 61508 >
“Check for root Inports with missing
properties”

• Modeling Standards for ISO 26262 >
“Check for root Inports with missing
properties”

• Modeling Standards for EN 50128 >
“Check for root Inports with missing
properties”

“hisl_0025: Design min/max
specification of input
interfaces”

• Modeling Standards for IEC 61508 >
“Check for root Outports with missing
range definitions”

• Modeling Standards for ISO 26262 >
“Check for root Outports with missing
range definitions”

• Modeling Standards for EN 50128 >
“Check for root Outports with missing
range definitions”

“hisl_0026: Design min/max
specification of output
interfaces”

• Modeling Standards for IEC 61508 >
“Check for root Outports with missing
range definitions”

• Modeling Standards for ISO 26262 >
“Check for root Outports with missing
range definitions”

• Modeling Standards for EN 50128 >
“Check for root Outports with missing
range definitions”

1-9

1 Introduction

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0013: Usage of data
store blocks”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for data store
memory”

“hisl_0015: Usage of Merge
blocks”

Not applicable

“hisl_0021: Consistent
vector indexing method”

• Modeling Standards for IEC
61508 > “Check for inconsistent vector
indexing methods”

• Modeling Standards for ISO 26262
> “Check for inconsistent vector
indexing methods”

• Modeling Standards for EN
50128 > “Check for inconsistent
vector indexing methods”

• Modeling Standards for
DO-178C/DO-331 > “Check for
inconsistent vector indexing
methods”

“hisl_0022: Data type
selection for index signals”

Not applicable

“hisl_0023: Verification
of model and subsystem
variants”

Not applicable

1-10

Model Advisor Checks for High-Integrity Modeling Guidelines

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0016: Usage of blocks
that compute relational
operators”

• Modeling Standards for IEC
61508 > “Check usage of Logic and Bit
Operations blocks”

• Modeling Standards for ISO 26262
> “Check usage of Logic and Bit
Operations blocks”

• Modeling Standards for EN
50128 > “Check usage of Logic
and Bit Operations blocks”

• Modeling Standards for
DO-178C/DO-331 > “Check usage
of Logic and Bit Operations blocks”

“hisl_0017: Usage of blocks
that compute relational
operators (2)”

• Modeling Standards for IEC
61508 > “Check usage of Logic and Bit
Operations blocks”

• Modeling Standards for ISO 26262
> “Check usage of Logic and Bit
Operations blocks”

• Modeling Standards for EN
50128 > “Check usage of Logic
and Bit Operations blocks”

• Modeling Standards for
DO-178C/DO-331 > “Check usage
of Logic and Bit Operations blocks”

1-11

1 Introduction

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0018: Usage of Logical
Operator block”

• Modeling Standards for IEC
61508 > “Check usage of Logic and Bit
Operations blocks”

• Modeling Standards for ISO 26262
> “Check usage of Logic and Bit
Operations blocks”

Modeling Standards for EN
50128 > “Check usage of Logic
and Bit Operations blocks”

• Modeling Standards for
DO-178C/DO-331 > “Check usage
of Logic and Bit Operations blocks”

• Modeling Standards for
DO-178C/DO-331 > “Check
safety-related optimization settings”

“hisl_0019: Usage of Bitwise
Operator block”

Not applicable

“hisf_0001: Mealy and
Moore semantics”

• Modeling Standards for
DO-178C/DO-331 > “Check state
machine type of Stateflow charts”

• Modeling Standards for IEC
61508 > “Check state machine type of
Stateflow charts”

• Modeling Standards for ISO
26262 > “Check state machine type of
Stateflow charts”

• Modeling Standards for EN
50128 > “Check state machine
type of Stateflow charts”

1-12

Model Advisor Checks for High-Integrity Modeling Guidelines

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisf_0002: User-specified
state/transition execution
order”

• Modeling Standards for
DO-178C/DO-331 > “Check Stateflow
charts for ordering of states and
transitions”

• Modeling Standards for IEC
61508 > “Check usage of Stateflow®

constructs”

• Modeling Standards for ISO
26262 > “Check usage of Stateflow
constructs”

• Modeling Standards for EN
50128 > “Check usage of Stateflow
constructs”

“hisf_0009: Strong data
typing (Simulink and
Stateflow boundary)”

• Modeling Standards for IEC
61508 > “Check usage of Stateflow
constructs”

• Modeling Standards for ISO
26262 > “Check usage of Stateflow
constructs”

• Modeling Standards for EN
50128 > “Check usage of Stateflow
constructs”

“hisf_0011: Stateflow
debugging settings”

• Modeling Standards for
DO-178C/DO-331 > “Check Stateflow
debugging options”

• Modeling Standards for IEC
61508 > “Check usage of Stateflow
constructs”

• Modeling Standards for ISO
26262 > “Check usage of Stateflow
constructs”

1-13

1 Introduction

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

• Modeling Standards for EN
50128 > “Check usage of Stateflow
constructs”

“hisf_0003: Usage of bitwise
operations”

Modeling Standards for
MAAB > Stateflow > “Check for
bitwise operations in Stateflow charts”

“hisf_0004: Usage of
recursive behavior”

Not applicable

“hisf_0007: Usage of
junction conditions
(maintaining mutual
exclusion)”

Not applicable

“hisf_0010: Usage of
transition paths (looping
out of parent of source and
destination objects)”

Not applicable

“hisf_0012: Chart
comments”

Not applicable

“hisf_0013: Usage of
transition paths (crossing
parallel state boundaries)”

Not applicable

“hisf_0014: Usage of
transition paths (passing
through states)”

Not applicable

“hisf_0015: Strong data
typing (casting variables
and parameters in
expressions)”

Not applicable

“himl_0001: Usage of
standardized MATLAB®

function headers”

Not applicable

1-14

Model Advisor Checks for High-Integrity Modeling Guidelines

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“himl_0002: Strong data
typing at MATLAB function
boundaries”

• Modeling Standards for
DO-178C/DO-331 > “Check for
MATLAB Function block interfaces
with inherited properties”

• Modeling Standards for ISO 26262 >
“Check for MATLAB Function block
interfaces with inherited properties”

• Modeling Standards for EN 50128 >
“Check for MATLAB Function block
interfaces with inherited properties”

• Modeling Standards for IEC 61508>
“Check for MATLAB Function block
interfaces with inherited properties”

“himl_0003: Limitation
of MATLAB function
complexity”

• Modeling Standards for
DO-178C/DO-331 > “Check MATLAB
Function block metrics”

• Modeling Standards for ISO 26262
> “Check MATLAB Function block
metrics”

• Modeling Standards for EN 50128
> “Check MATLAB Function block
metrics”

• Modeling Standards for IEC 61508>
“Check MATLAB Function block
metrics”

1-15

1 Introduction

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“himl_0005: Usage of global
variables in MATLAB
functions”

• Modeling Standards for
DO-178C/DO-331 > “Check MATLAB
code for global variables”

• Modeling Standards for
IEC-61508 > “Check MATLAB
code for global variables”

• Modeling Standards for EN
50128 > “Check MATLAB code
for global variables”

• Modeling Standards for
ISO-26262 > “Check MATLAB
code for global variables”

“himl_0004: MATLAB Code
Analyzer recommendations
for code generation”

• Modeling Standards for
DO-178C/DO-331 > “Check MATLAB
Code Analyzer messages”

• Modeling Standards for
IEC-61508 > “Check MATLAB
Code Analyzer messages”

• Modeling Standards for EN
50128 > “Check MATLAB Code
Analyzer messages”

• Modeling Standards for
ISO-26262 > “Check MATLAB
Code Analyzer messages”

“himl_0006: MATLAB code
if / elseif / else patterns”

Not applicable

“himl_0007: MATLAB code
switch / case / otherwise
patterns”

Not applicable

“himl_0008: MATLAB code
relational operator data
types”

Not applicable

1-16

Model Advisor Checks for High-Integrity Modeling Guidelines

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“himl_0009: MATLAB
code with equal / not equal
relational operators”

Not applicable

“himl_0010: MATLAB code
with logical operators and
functions”

Not applicable

“hisl_0040: Configuration
Parameters > Solver >
Simulation time”

Not applicable

“hisl_0041: Configuration
Parameters > Solver >
Solver options”

Not applicable

“hisl_0042: Configuration
Parameters > Solver >
Tasking and sample time
options”

Not applicable

“hisl_0043: Configuration
Parameters > Diagnostics >
Solver”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for solvers”

“hisl_0044: Configuration
Parameters > Diagnostics >
Sample Time”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for sample time”

“hisl_0301: Configuration
Parameters > Diagnostics >
Compatibility”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for compatibility”

“hisl_0302: Configuration
Parameters > Diagnostics >
Data Validity > Parameters”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for parameters”

“hisl_0303: Configuration
Parameters > Diagnostics
> Data Validity > Merge
block”

Not applicable

1-17

1 Introduction

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0304: Configuration
Parameters > Diagnostics
> Data Validity > Model
Initialization”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for model
initialization”

“hisl_0305: Configuration
Parameters > Diagnostics >
Data Validity > Debugging”

Not applicable

“hisl_0306: Configuration
Parameters > Diagnostics >
Connectivity > Signals”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for signal
connectivity”

“hisl_0307: Configuration
Parameters > Diagnostics >
Connectivity > Buses”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for bus connectivity”

“hisl_0308: Configuration
Parameters > Diagnostics
> Connectivity > Function
calls”

Modeling Standards for DO-178C/DO-331
> “Check safety-related diagnostic
settings that apply to function-call
connectivity”

“hisl_0309: Configuration
Parameters > Diagnostics >
Type Conversion”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for type conversions”

“hisl_0310: Configuration
Parameters > Diagnostics >
Model Referencing”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
diagnostic settings for model
referencing”

“hisl_0311: Configuration
Parameters > Diagnostics >
Stateflow”

Not applicable

“hisl_0045: Configuration
Parameters > Optimization
> Implement logic signals as
Boolean data (vs. double)”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
optimization settings”

1-18

Model Advisor Checks for High-Integrity Modeling Guidelines

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0046: Configuration
Parameters > Optimization
> Block reduction”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
optimization settings”

“hisl_0048: Configuration
Parameters > Optimization
> Application lifespan
(days)”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
optimization settings”

“hisl_0051: Configuration
Parameters > Optimization
> Signals and Parameters >
Loop unrolling threshold”

Not applicable

“hisl_0052: Configuration
Parameters > Optimization
> Data initialization”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
optimization settings”

“hisl_0053: Configuration
Parameters > Optimization
> Remove code from
floating-point to integer
conversions that wraps
out-of-range values”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
optimization settings”

“hisl_0054: Configuration
Parameters > Optimization
> Remove code that protects
against division arithmetic
exceptions”

Modeling Standards for
DO-178C/DO-331 > “Check safety-related
optimization settings”

“hisl_0055: Prioritization of
code generation objectives
for high-integrity systems”

Not applicable

“hisl_0061: Unique
identifiers for clarity”

Not applicable

“hisl_0062: Global variables
in graphical functions”

Not applicable

1-19

1 Introduction

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0063: Length of
user-defined function names
to improve MISRA-C:2004
compliance”

Not applicable

“hisl_0064: Length
of user-defined type
object names to improve
MISRA-C:2004 compliance”

Not applicable

“hisl_0065: Length of signal
and parameter names to
improve MISRA-C:2004
compliance”

Not applicable

“hisl_0201: Define reserved
keywords to improve
MISRA-C:2004 compliance”

Not applicable

“hisl_0202: Use of data
conversion blocks to improve
MISRA-C:2004 compliance”

Not applicable

“hisl_0020: Blocks
not recommended for
MISRA-C:2004 compliance”

By Product > Embedded Coder > “Check
for blocks not recommended for
MISRA-C:2004 compliance”

“hisl_0101: Avoid invariant
comparison operations to
improve MISRA-C:2004
compliance”

Not applicable

“hisl_0102: Data type of
loop control variables to
improve MISRA-C:2004
compliance”

Not applicable

“hisl_0060: Configuration
parameters that improve
MISRA-C:2004 compliance”

By Product > Embedded Coder > “Check
configuration parameters for
MISRA-C:2004 compliance”

1-20

Model Advisor Checks for High-Integrity Modeling Guidelines

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0312: Specify target
specific configuration
parameters to improve
MISRA-C:2004 compliance”

Not applicable

“hisl_0313: Selection of
bitfield data types to
improve MISRA-C:2004
compliance”

Not applicable

“hisf_0064: Shift operations
for Stateflow data to
improve MISRA-C:2004
compliance”

Not applicable

“hisf_0065: Type cast
operations in Stateflow to
improve MISRA-C:2004
compliance”

Not applicable

“hisf_0211: Protect against
use of unary operators in
Stateflow Charts to improve
MISRA-C:2004 compliance”

Not applicable

“hisf_0212: Data type
of Stateflow for loop
control variables to improve
MISRA-C: 2004 compliance”

Not applicable

“hisf_0213: Protect against
divide-by-zero calculations
in Stateflow charts to
improve MISRA-C: 2004
compliance”

Not applicable

“hisl_0401: Encapsulation
of code to improve
MISRA-C:2004 compliance”

Not applicable

1-21

1 Introduction

High-Integrity Modeling
Guideline

Model Advisor check in By Task folder

“hisl_0402: Use of custom
#pragma to improve
MISRA-C:2004 compliance”

Not applicable

“hisl_0403: Use of
char data type improve
MISRA-C:2004 compliance”

Not applicable

1-22

2

Simulink Block
Considerations

• “Math Operations” on page 2-2

• “Ports & Subsystems” on page 2-19

• “Signal Routing” on page 2-39

• “Logic and Bit Operations” on page 2-48

2 Simulink® Block Considerations

Math Operations

In this section...

“hisl_0001: Usage of Abs block” on page 2-3

“hisl_0002: Usage of Math Function blocks (rem and reciprocal)” on page 2-5

“hisl_0003: Usage of Square Root blocks” on page 2-7

“hisl_0028: Usage of Reciprocal Square Root blocks” on page 2-8

“hisl_0004: Usage of Math Function blocks (natural logarithm and base
10 logarithm)” on page 2-10

“hisl_0005: Usage of Product blocks” on page 2-13

“hisl_0029: Usage of Assignment blocks” on page 2-15

2-2

Math Operations

hisl_0001: Usage of Abs block

ID: Title hisl_0001: Usage of Abs block

To support robustness of generated code, when using the Abs block,

A Avoid Boolean and unsigned integer data types as inputs to the
Abs block.

Description

B In the Abs block parameter dialog box, select Saturate on integer
overflow.

Notes The Abs block does not support Boolean data types. Specifying an unsigned
input data type, might optimize the Abs block out of the generated code,
resulting in a block you cannot trace to the generated code.

For signed data types, Simulink does not represent the absolute value of the
most negative value. When you select Saturate on integer overflow, the
absolute value of the data type saturates to the most positive representable
value. When you clear Saturate on integer overflow, absolute value
calculations in the simulation and generated code might not be consistent
or expected.

A Support generation of traceable code.Rationale

B Achieve consistent and expected behavior of model simulation and
generated code.

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
usage of Math Operations blocks”

• By Task > Modeling Standards for IEC-61508 > “Check usage of
Math Operations blocks”

• By Task > Modeling Standards for EN 50128 > “Check usage of
Math Operations blocks”

• By Task > Modeling Standards for ISO-26262 > “Check usage of
Math Operations blocks”

2-3

2 Simulink® Block Considerations

ID: Title hisl_0001: Usage of Abs block

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’
IEC 61508-3, Table A.3 (2) ’Strongly typed programming language’
IEC 61508-3, Table B.8 (3) ’Control Flow Analysis’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’
ISO 26262-6, Table 7 (f) ’Control flow analysis’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’
EN 50128, Table A.4 (8) ’Strongly Typed Programming Language’
EN 50128, Table A.19 (3) ’Control Flow Analysis’

• DO-331, Section MB.6.3.2.d ’Low-level requirements are verifiable’

• MISRA-C:2004, Rule 14.1
MISRA-C:2004, Rule 21.1

Last Changed R2013b

Examples

Recommended

Not Recommended

2-4

Math Operations

hisl_0002: Usage of Math Function blocks (rem and
reciprocal)

ID: Title hisl_0002: Usage of Math Function blocks (rem and reciprocal)

To support robustness of generated code, when using the Math Function
block with remainder-after-division (rem) or reciprocal (reciprocal)
functions:

A Protect the input of the reciprocal function from going to zero.

Description

B Protect the second input of the rem function from going to zero.

Note You can get a divide-by-zero operation, resulting in an infinite (Inf) output
value for the reciprocal function, or a Not-a-Number (NaN) output value
for the rem function. To avoid overflows or undefined values, protect the
corresponding input from going to zero.

Rationale A, B Protect against overflows and undefined numerical results.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check usage
of Math Operations blocks”

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1(b) ’Use of language subsets’
ISO 26262-6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.2.g ’Algorithms are accurate’’

• MISRA-C:2004, Rule 21.1

2-5

2 Simulink® Block Considerations

ID: Title hisl_0002: Usage of Math Function blocks (rem and reciprocal)

Last Changed R2014a

Examples In the following example, when the input signal oscillates around zero,
the output exhibits a large change in value. You need further protection
against the large change in value.

2-6

Math Operations

hisl_0003: Usage of Square Root blocks

ID: Title hisl_0003: Usage of Square Root blocks

To support robustness of generated code, when using the Square Root
block, do one of the following:

A Account for complex numbers as the output.

Description

B Protect the input from going negative.

Rationale A, B Avoid undesirable results in generated code.

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1(b) ’Use of language subsets’
ISO 26262-6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

Last Changed R2013b

Examples

2-7

2 Simulink® Block Considerations

hisl_0028: Usage of Reciprocal Square Root blocks

ID: Title hisl_0028: Usage of Reciprocal Square Root blocks

To support robustness of generated code, when using the Reciprocal Square
Root block, do one of the following:

A Protect the input from going negative.

Description

B Protect the input from going to zero.

Note You can get a divide-by-zero operation, resulting in an (Inf) output value
for the reciprocal function. To avoid overflows or undefined values, protect
the corresponding input from going to zero.

Rationale A, B Avoid undesirable results in generated code.

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1(b) ’Use of language subsets’
ISO 26262-6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

2-8

Math Operations

ID: Title hisl_0028: Usage of Reciprocal Square Root blocks

Last Changed R2013b

Examples

2-9

2 Simulink® Block Considerations

hisl_0004: Usage of Math Function blocks (natural
logarithm and base 10 logarithm)

ID: Title hisl_0004: Usage of Math Function blocks (natural logarithm and
base 10 logarithm)

To support robustness of generated code, when using the Math Function
block with natural logarithm (log) or base 10 logarithm (log10) function
parameters,

A Protect the input from going negative.

B Protect the input from equaling zero.

Description

C Account for complex numbers as the output value.

Notes If you set the output data type to complex, the natural logarithm and base
10 logarithm functions output complex values for negative input values. If
you set the output data type to real, the functions output NAN for negative
numbers, and minus infinity (-inf) for zero values.

Rationale A,
B, C

Support generation of robust code.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check usage
of Math Operations blocks”

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1(b) ’Use of language subsets’
ISO 26262-6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.2.g ’Algorithms are accurate’’

Last Changed R2013b

2-10

Math Operations

ID: Title hisl_0004: Usage of Math Function blocks (natural logarithm and
base 10 logarithm)

Examples

You can protect against:

• Negative numbers using an Abs block.

• Zero values using a combination of the MinMax block and a Constant
block, with Constant value set to eps (epsilon).

The following example displays the resulting output for input values
ranging from -100 to 100.

2-11

2 Simulink® Block Considerations

ID: Title hisl_0004: Usage of Math Function blocks (natural logarithm and
base 10 logarithm)

2-12

Math Operations

hisl_0005: Usage of Product blocks

ID: Title hisl_0005: Usage of Product blocks

To support robustness of generated code, when using the Product block
with divisor inputs,

A In Element-wise(.*) mode, protect divisor inputs from going to zero.

B In Matrix(*) mode, protect divisor inputs from becoming singular
input matrices.

Description

C Set the model configuration parameter Diagnostics > Data
Validity > Signals > Division by singular matrix to error.

Notes When using Product blocks for element-wise divisions, you might get a
divide by zero, resulting in a NaN output. To avoid overflows, protect divisor
inputs from going to zero.

When using Product blocks to compute the inverse of a matrix, or a matrix
division, you might get a divide by a singular matrix. This division results
in a NaN output. To avoid overflows, protect divisor inputs from becoming
singular input matrices.

During simulation, while the software inverts one of the input values of
a Product block that is in matrix multiplication mode, the Division by
singular matrix diagnostic can detect a singular matrix.

Rationale A,
B,
C

Protect against overflows.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for signal data”

2-13

2 Simulink® Block Considerations

ID: Title hisl_0005: Usage of Product blocks

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262–6, Table 1(b) ’Use of language subsets’
ISO 26262–6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.4.2.2 ’Robustness Test Cases’
DO-331, Section MB.6.4.3 ’Requirements-Based Testing Methods’

• MISRA-C:2004, Rule 21.1

Last Changed R2013b

2-14

Math Operations

hisl_0029: Usage of Assignment blocks

ID: Title hisl_0029: Usage of Assignment blocks

Description To support robustness of generated code, when using the Assignment block,
initialize array fields before their first use.

Notes If the output vector of the Assignment block is not initialized with an input to
the block, elements of the vector might not be initialized in the generated code.

When the Assignment block is used iteratively and all array field are assigned
during one simulation time step, you do not need initialization input to the
block.

Accessing uninitialized elements of block output can result in unexpected
behavior.

Rationale Avoid undesirable results in generated code.

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > “Check usage
of Math Operations blocks”

• By Task > Modeling Standards for IEC-61508 > “Check usage of
Math Operations blocks”

• By Task > Modeling Standards for EN 50128 > “Check usage of Math
Operations blocks”

• By Task > Modeling Standards for ISO-26262 > “Check usage of
Math Operations blocks”

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262–6, Table 1(b) ’Use of language subsets’
ISO 26262–6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.1.e ’High-level requirements conform to standards’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to standards’

• MISRA-C:2004, Rule 9.1

2-15

2 Simulink® Block Considerations

ID: Title hisl_0029: Usage of Assignment blocks

Last Changed R2014a

Examples

Not Recommended: No initialization input Y0 when block is not used
iteratively

2-16

Math Operations

ID: Title hisl_0029: Usage of Assignment blocks

Recommended: Initialization input Y0 when block is not used iteratively

2-17

2 Simulink® Block Considerations

ID: Title hisl_0029: Usage of Assignment blocks

Recommended: Initialize array fields when block is used iteratively

2-18

Ports & Subsystems

Ports & Subsystems

In this section...

“hisl_0006: Usage of While Iterator blocks” on page 2-20

“hisl_0007: Usage of While Iterator subsystems” on page 2-22

“hisl_0008: Usage of For Iterator Blocks” on page 2-25

“hisl_0009: Usage of For Iterator Subsystem blocks” on page 2-27

“hisl_0010: Usage of If blocks and If Action Subsystem blocks” on page 2-28

“hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks”
on page 2-30

“hisl_0012: Usage of conditionally executed subsystems” on page 2-32

“hisl_0024: Inport interface definition” on page 2-34

“hisl_0025: Design min/max specification of input interfaces” on page 2-35

“hisl_0026: Design min/max specification of output interfaces” on page 2-37

2-19

2 Simulink® Block Considerations

hisl_0006: Usage of While Iterator blocks

ID: Title hisl_0006: Usage of While Iterator blocks

To support bounded iterative behavior in the generated code when using
the While Iterator block, in the While Iterator block parameters dialog box:

A SetMaximum number of iterations to a positive integer value; do
not set value to —1 for unlimited.

Description

B Consider selecting Show iteration number port to observe the
iteration value during simulation.

Note When you use While Iterator subsystems, set the maximum number of
iterations. If you use an unlimited number of iterations, the generated code
might include infinite loops, which lead to execution-time overruns.

To observe the iteration value during simulation and determine whether
the loop reaches the maximum number of iterations, select the While
Iterator block parameter Show iteration number port. If the loop
reaches the maximum number of iterations, verify the output values of the
While Iterator block.

Rationale A, B Support bounded iterative in the generated code.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for ISO 26262 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for EN 50128 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
usage of Ports and Subsystems blocks”

2-20

Ports & Subsystems

ID: Title hisl_0006: Usage of While Iterator blocks

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’

• MISRA-C:2004, Rule 21.1

Last Changed R2013b

2-21

2 Simulink® Block Considerations

hisl_0007: Usage of While Iterator subsystems

ID: Title hisl_0007: Usage of While Iterator subsystems

To support unambiguous behavior, when using While Iterator subsystems,

A Specify inherited (-1) or constant (inf) sample times for the blocks
within the subsystems.

Description

B Avoid using sample time-dependent blocks, such as integrators,
filters, and transfer functions, within the subsystems.

Rationale A, B Avoid ambiguous behavior from the subsystem.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for ISO 26262 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for EN 50128 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for DO-178C/DO-331> “Check
usage of Ports and Subsystems blocks”

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’

• MISRA-C:2004, Rule 21.1

2-22

Ports & Subsystems

ID: Title hisl_0007: Usage of While Iterator subsystems

Last Changed R2013b

Examples For iterative subsystems, the value delta T is nonzero for the first
iteration only. For subsequent iterations, the value is zero.

In the following example, in the output of the Sum block calculation that
uses the unit delay, the Sum block calculation does not require delta T.
The output of the Discrete-Time Integrator block displays the result of
having a zero delta T value.

2-23

2 Simulink® Block Considerations

ID: Title hisl_0007: Usage of While Iterator subsystems

2-24

Ports & Subsystems

hisl_0008: Usage of For Iterator Blocks

ID: Title hisl_0008: Usage of For Iterator blocks

To support bounded iterative behavior in the generated code when using
the For Iterator block, do one of the following:

A In the For Iterator block parameters dialog box, set Iteration limit
source to internal.

B If Iteration limit source must be external, use a block that has a
constant value, such as a Width, Probe, or Constant.

C In the For Iterator block parameters dialog box, clear Set next i
(iteration variable) externally.

Description

D In the For Iterator block parameters dialog box, consider selecting
Show iteration variable to observe the iteration value during
simulation.

Notes When you use the For Iterator block, feed the loop control variable with
fixed (nonvariable) values to get a predictable number of loop iterations.
Otherwise, a loop can result in unpredictable execution times and, in
the case of external iteration variables, infinite loops that can lead to
execution-time overruns.

Rationale A, B,
C, D

Support bounded iterative behavior in generated code.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for ISO 26262 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for EN 50128 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
usage of Ports and Subsystems blocks”

2-25

2 Simulink® Block Considerations

ID: Title hisl_0008: Usage of For Iterator blocks

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, MB.Section 6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’

• MISRA-C:2004, Rule 13.6

Last Changed R2013b

2-26

Ports & Subsystems

hisl_0009: Usage of For Iterator Subsystem blocks

ID: Title hisl_0009: Usage of For Iterator Subsystem blocks

To support unambiguous behavior, when using the For Iterator Subsystem
block,

A Specify inherited (-1) or constant (inf) sample times for blocks
within the subsystem.

Description

B Avoid using sample time-dependent blocks, such as integrators,
filters, and transfer functions, within the subsystem.

Rationale A, B Avoid ambiguous behavior from the subsystem.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for ISO 26262 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for EN 50128 > “Check usage of
Ports and Subsystems blocks”

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
usage of Ports and Subsystems blocks”

References • IEC 61508-3, Table A.3 (3) ’Language subset’;
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

• MISRA-C:2004, Rule 13.6

Last Changed R2013b

Examples See “hisl_0007: Usage of While Iterator subsystems” on page 2-22.

2-27

2 Simulink® Block Considerations

hisl_0010: Usage of If blocks and If Action Subsystem
blocks

ID: Title hisl_0010: Usage of If blocks and If Action Subsystem blocks

To support verifiable generated code, when using the If block with
nonempty Elseif expressions,

A In the block parameter dialog box, select Show else condition.

Description

B Connect the outports of the If block to If Action Subsystem blocks.

Prerequisites “hisl_0016: Usage of blocks that compute relational operators” on page 2-49

Notes The combination of If and If Action Subsystem blocks enable conditional
execution based on input conditions. When there is only an if branch, you
do not need to include an else branch.

Rationale A,
B

Support generation of verifiable code.

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262–6, Table 1(b) ’Use of language subsets’
ISO 26262–6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• MISRA-C:2004, Rule 14.10

See Also na_0012: Use of Switch vs. If-Then-Else Action Subsystem in the Simulink
documentation

Last Changed R2013b

2-28

Ports & Subsystems

ID: Title hisl_0010: Usage of If blocks and If Action Subsystem blocks

Recommended: Elseif with Else

Not Recommended: No Else Path

Examples

Recommended: Only an If, no Else required

2-29

2 Simulink® Block Considerations

hisl_0011: Usage of Switch Case blocks and Action
Subsystem blocks

ID: Title hisl_0011: Usage of Switch Case blocks and Action Subsystem
blocks

To support verifiable generated code, when using the Switch Case block:

A In the Switch Case block parameter dialog box, select Show default
case.

B Connect the outports of the Switch Case block to a Switch Case
Action Subsystem block.

Description

C Use an integer data type for the inputs to Switch Case blocks.

Prerequisites “hisl_0016: Usage of blocks that compute relational operators” on page 2-49

Notes The combination of Switch Case and If Action Subsystem blocks enable
conditional execution based on input conditions. Provide a default path of
execution in the form of a “Default” block.

Rationale A,
B, C

Support generation of verifiable code.

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262–6, Table 1(b) ’Use of language subsets’
ISO 26262–6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• MISRA-C:2004, Rule 15.3

See Also db_0115: Simulink patterns for case constructs in the Simulink
documentation.

2-30

Ports & Subsystems

ID: Title hisl_0011: Usage of Switch Case blocks and Action Subsystem
blocks

Last Changed R2013b

Examples The following graphic displays an example of providing a default path of
execution using a “Default” block.

2-31

2 Simulink® Block Considerations

hisl_0012: Usage of conditionally executed
subsystems

ID: Title hisl_0012: Usage of conditionally executed subsystems

To support unambiguous behavior, when using conditionally executed
subsystems:

A Specify inherited (-1) sample times for all blocks in the subsystem,
except Constant. Constant blocks can use infinite (inf) sample time.

Description

B If the subsystem is called asynchronously, avoid using sample
time-dependent blocks, such as integrators, filters, and transfer
functions, within the subsystem.

Notes Conditionally executed subsystems include:

• If Action

• Switch Case Action

• Function-Call

• Triggered

• Enabled

Sample time-dependent blocks include:

• Discrete State-Space

• Discrete-Time Integrator

• Discrete FIR Filter

• Discrete Filter

• Discrete Transfer Fcn

• Discrete Zero-Pole

• Transfer Fcn First Order

• Transfer Fnc Real Zero

• Transfer Fcn Lead or Lag

Rationale A, B Support unambiguous behavior.

2-32

Ports & Subsystems

ID: Title hisl_0012: Usage of conditionally executed subsystems

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262–6, Table 1(b) ’Use of language subsets’
ISO 26262–6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

Last Changed R2013b

Examples When using discrete blocks, the behavior depends on the operation across
multiple contiguous time steps. When the blocks are called intermittently,
the results may not conform to your expectations.

2-33

2 Simulink® Block Considerations

hisl_0024: Inport interface definition

ID: Title hisl_0024: Inport interface definition

Description To support strong data typing and unambiguous behavior of the model
and the generated code, for each root-level Inport block, explicitly set the
following block parameters:
• Data type

• Port dimensions (-1 for inherited)

• Sample time (-1 for inherited)

Note Using root-level Inport blocks without fully defined dimensions, sample
times, or data type can lead to ambiguous simulation results. If you do not
explicitly define these parameters, Simulink back-propagates dimensions,
sample times, and data types from downstream blocks.

Rationale • Avoid unambiguous behavior.

• Support full specification of software interface.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check for root
Inports with missing properties”

• By Task > Modeling Standards for ISO 26262 > “Check for root
Inports with missing properties”

• By Task > Modeling Standards for EN 50128 > “Check for root
Inports with missing properties”

References • IEC 61508-3, Table B.9 (5) ‘Fully defined interface’

• ISO 26262-4, Table 2 (2) ‘Precisely defined interfaces‘
ISO 26262-6, Table 1 (1f) ‘Use of unambiguous graphical representation‘

• EN 50128, Table A.3 (19) ‘Fully Defined Interface‘

Last Changed R2013b

2-34

Ports & Subsystems

hisl_0025: Design min/max specification of input
interfaces

ID: Title hisl_0025: Design min/max specification of input interfaces

Description Provide design min/max information for root-level Inport blocks to specify
the input interface ranges.

Notes
• Specifying the range of Inport blocks on the root level enables additional
capabilities1. Examples include:

- Detection of overflows through simulation range checking.

- Code optimizations using Embedded Coder.

- Design model verification using Simulink Design Verifier™.

- Fixed-point autoscaling using Fixed-Point Designer™.

• Specified design ranges can be used by Embedded Coder to optimize
the generated code. If you want to use design ranges for optimization,
in the Configuration Parameters dialog box, on the Code Generation
pane, consider selecting Optimize using the specified minimum and
maximum values.

• Ranges for bus-type Inport blocks are specified with the bus elements of
the defining bus object. Simulink ignores range specifications provided
directly at Inport blocks that are bus-type.

Rationale Support precise specification of the input interface.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check for root
Inports with missing range definitions”

• By Task > Modeling Standards for ISO 26262 > “Check for root
Inports with missing range definitions”

• By Task > Modeling Standards for EN 50128 > “Check for root
Inports with missing range definitions”

1. These capabilities leverage design range information for different purposes. For more
information, refer to the documentation for the tools you intend to use.

2-35

2 Simulink® Block Considerations

ID: Title hisl_0025: Design min/max specification of input interfaces

References • IEC 61508-3, Table B.9 (5) ‘Fully defined interface’

• ISO 26262-4, Table 2 (2) ‘Precisely defined interfaces‘

• EN 50128, Table A.1(11) – Software Interface Specifications, Table A.3
(19) ‘Fully Defined Interface‘

Last Changed R2013b

2-36

Ports & Subsystems

hisl_0026: Design min/max specification of output
interfaces

ID: Title hisl_0026: Design min/max specification of output interfaces

Description Provide design min/max information for root-level Outport blocks to specify
the output interface ranges.

Notes
• Specifying the range of Outport blocks on the root level enables
additional capabilities2. Examples include:

- Detection of overflows through simulation range checking.

- Code optimizations using Embedded Coder.

- Design model verification using Simulink Design Verifier.

- Fixed-point autoscaling using Fixed-Point Designer.

• Specified design ranges can be used by Embedded Coder to optimize
the generated code. If you want to use design ranges for optimization,
in the Configuration Parameters dialog box, on the Code Generation
pane, consider selecting Optimize using the specified minimum and
maximum values.

• Ranges for bus-type Outport blocks are specified with the bus elements
of the defining bus object. Simulink ignores range specifications provided
directly at Outport blocks that are bus-type.

Rationale Support precise specification of the output interface.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check for root
Outports with missing range definitions”

• By Task > Modeling Standards for ISO 26262 > “Check for root
Outports with missing range definitions”

• By Task > Modeling Standards for EN 50128 > “Check for root
Outports with missing range definitions”

2. These capabilities leverage design range information for different purposes. For more
information, refer to the documentation for the tools you intend to use.

2-37

2 Simulink® Block Considerations

ID: Title hisl_0026: Design min/max specification of output interfaces

References • IEC 61508-3, Table B.9 (5) ‘Fully defined interface’

• ISO 26262-4, Table 2 (2) ‘Precisely defined interfaces‘

• EN 50128, Table A.1(11) – Software Interface Specifications, Table A.3
(19) ‘Fully Defined Interface‘

Last Changed R2013b

2-38

Signal Routing

Signal Routing

In this section...

“hisl_0013: Usage of data store blocks” on page 2-40

“hisl_0015: Usage of Merge blocks” on page 2-43

“hisl_0021: Consistent vector indexing method” on page 2-45

“hisl_0022: Data type selection for index signals” on page 2-46

“hisl_0023: Verification of model and subsystem variants” on page 2-47

2-39

2 Simulink® Block Considerations

hisl_0013: Usage of data store blocks

ID: Title hisl_0013: Usage of data store blocks

To support deterministic behavior across different sample times or models
when using data store blocks, including Data Store Memory, Data Store
Read, and Data Store Write:

A In the Configuration Parameters dialog box, on the
Diagnostics > Data Validity pane, under Data Store Memory
Block, set the following parameters to error:

• Detect read before write

• Detect write after read

• Detect write after write

• Multitask data store

• Duplicate data store names

B Avoid data store reads and writes that occur across model and atomic
subsystem boundaries.

Description

C Avoid using data stores to write and read data at different rates,
because different rates can result in inconsistent exchanges of data.
To provide deterministic data coupling in multirate systems, use
Rate Transition blocks before Data Store Write blocks, or after Data
Store Read blocks.

Notes The sorting algorithm in Simulink does not take into account data coupling
between models and atomic subsystems.

Using data store memory blocks can have significant impact on your
software verification effort. Models and subsystems that use only inports
and outports to pass data provide a directly traceable interface, simplifying
the verification process.

Rationale A,
B,
C

Support consistent data values across different sample times or
models.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for data store memory”

2-40

Signal Routing

ID: Title hisl_0013: Usage of data store blocks

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.3.b ’Software architecture is consistent’

Last Changed R2013b

Examples The following examples use Rate Transition blocks to provide deterministic
data coupling in multirate systems

• For fast-to-slow transitions:

Set the rate of the slow sample time on either the Rate Transition block
or the Data Store Write block.

Do not place the Rate Transition block after the Data Store Read block.

• For slow-to-fast transitions:

If the Rate Transition block is after the Data Store Read block, specify
the slow rate on the Data Store Read block.

2-41

2 Simulink® Block Considerations

ID: Title hisl_0013: Usage of data store blocks

If the Rate Transition block is before the Data Store Write block, use
the inherited sample time for the blocks.

2-42

Signal Routing

hisl_0015: Usage of Merge blocks

ID: Title hisl_0015: Usage of Merge blocks

To support unambiguous behavior from Merge blocks,

A Use Merge blocks only with conditionally executed subsystems.

B Specify execution of the conditionally executed subsystems such that
only one subsystem executes during a time step.

Description

C Clear the Merge block parameter Allow unequal port widths.

Notes Simulink combines the inputs of the Merge block into a single output. The
output value at any time is equal to the most recently computed output of
the blocks that drive the Merge block. Therefore, the Merge block output is
dependent upon the execution order of the input computations.

To provide predictable behavior of the Merge block output, you must have
mutual exclusion between the conditionally executed subsystems feeding a
Merge block. If the inputs are not mutually exclusive, Simulink uses the
last input port.

Rationale A,
B,
C

Avoid unambiguous behavior.

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1(b) ’Use of language subsets’
ISO 26262-6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.3.b ’Software architecture is consistent’

Last Changed R2013b

2-43

2 Simulink® Block Considerations

ID: Title hisl_0015: Usage of Merge blocks

Recommended

Examples

Not Recommended

2-44

Signal Routing

hisl_0021: Consistent vector indexing method

ID: Title hisl_0021: Consistent vector indexing method

Within a model, use:Description

A A consistent vector indexing method for all blocks. Blocks for which
you should set the indexing method include:
• Index Vector

• Multiport Switch

• Assignment

• Selector

• For Iterator

Rationale A Reduce the risk of introducing errors due to inconsistent indexing.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check for
inconsistent vector indexing methods”

• By Task > Modeling Standards for ISO 26262 > “Check for
inconsistent vector indexing methods”

• By Task > Modeling Standards for EN 50128 > “Check for
inconsistent vector indexing methods”

• By Task > Modeling Standards for DO-178C/DO-331 > “Check for
inconsistent vector indexing methods”

References • IEC 61508–3, Table A.3 (3) ’Language subset’
IEC 61508–3, Table A.4 (5) ’Design and coding standards’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (f) ’Use of unambiguous graphical representation’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.12 (1) ’Coding Standard’

• DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’

See Also “cgsl_0101: Zero-based indexing”

Last Changed R2013b

2-45

2 Simulink® Block Considerations

hisl_0022: Data type selection for index signals

ID: Title hisl_0022: Data type selection for index signals

For index signals, use:

A An integer or enumerated data type

B A data type that covers the range of indexed values.

Description

Blocks that use a signal index include:

• Assignment

• Direct Lookup Table (n-D)

• Index Vector

• Interpolation Using Prelookup

• MATLAB Function

• Multiport Switch

• n-D Lookup Table (internal type index selection)

• Selector

• Stateflow Chart

A Prevent unexpected results that can occur with rounding operations
for floating-point data types.

Rationale

B Enable access to data in a vector.

References • IEC 61508–3, Table A.3 (2) ’Strongly typed programming language’
IEC 61508–3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (c) ’Enforcement of strong typing’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (8) ’Strongly Typed Programming Language’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.4.f ’Accuracy and Consistency of Source Code’

Last Changed R2013b

2-46

Signal Routing

hisl_0023: Verification of model and subsystem
variants

ID: Title hisl_0023: Verification of model and subsystem variants

When verifying that a model is consistent with generated code, do one
of the following:

A In the Configuration Parameters dialog box, on the Code
Generation > Interface pane, disable variants in generated code
by setting Generate preprocessor conditionals to Disable all.

Description

B Verify all combinations of model variants that might be active in
the generated code.

A Simplify consistency testing between the model and generated code
by restricting the code base to a single variant.

Rationale

B Make sure that consistency testing between the model and generated
code is complete for all variants.

References • DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’

• IEC 61508–3, Table A.4 (7) ’Use of trusted / verified software modules
and components’

Last Changed R2012b

2-47

2 Simulink® Block Considerations

Logic and Bit Operations

In this section...

“hisl_0016: Usage of blocks that compute relational operators” on page 2-49

“hisl_0017: Usage of blocks that compute relational operators (2)” on page
2-51

“hisl_0018: Usage of Logical Operator block” on page 2-52

“hisl_0019: Usage of Bitwise Operator block” on page 2-53

2-48

Logic and Bit Operations

hisl_0016: Usage of blocks that compute relational
operators

ID: Title hisl_0016: Usage of blocks that compute relational operators

To support the robustness of the operations, when using blocks that
compute relational operators, including Relational Operator, Compare To
Constant, Compare to Zero, and Detect Change

Description

A Avoid comparisons using the == or ~= operator on floating-point
data types.

Notes Due to floating-point precision issues, do not test floating-point expressions
for equality (==) or inequality (~=).

When the model contains a block computing a relational operator with the
== or ~= operators, the inputs to the block must not be single, double, or
any custom storage class that is a floating-point type. Change the data type
of the input signals, or rework the model to eliminate using the == or ~=
operators within blocks that compute relational operators.

Rationale A Improve model robustness.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check usage of
Logic and Bit Operations blocks”

• By Task > Modeling Standards for ISO 26262 > “Check usage of
Logic and Bit Operations blocks”

• By Task > Modeling Standards for EN 50128 > “Check usage of
Logic and Bit Operations blocks”

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
usage of Logic and Bit Operations blocks”

2-49

2 Simulink® Block Considerations

ID: Title hisl_0016: Usage of blocks that compute relational operators

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

• MISRA-C:2004, Rule 13.3

See Also “hisl_0017: Usage of blocks that compute relational operators (2)” on page
2-51

Last Changed R2013b

Examples Positive Pattern: To test whether two floating-point variables or
expressions are equal, compare the difference of the two variables against a
threshold that takes into account the floating-point relative accuracy (eps)
and the magnitude of the numbers.

The following pattern shows how to test two double-precision input signals,
In1 and In2, for equality.

2-50

Logic and Bit Operations

hisl_0017: Usage of blocks that compute relational
operators (2)

ID: Title hisl_0017: Usage of blocks that compute relational operators (2)

To support unambiguous behavior in the generated code, when using blocks
that compute relational operators, including Relational Operator, Compare
To Constant, Compare to Zero, and Detect Change

Description

A Set the block Output data type parameter to Boolean.

Rationale A Support generation of code that produces unambiguous behavior.

Model Advisor
Checks • By Task > Modeling Standards for IEC 61508 > “Check usage of

Logic and Bit Operations blocks”

• By Task > Modeling Standards for ISO 26262 > “Check usage of
Logic and Bit Operations blocks”

• By Task > Modeling Standards for EN 50128 > “Check usage of
Logic and Bit Operations blocks”

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
usage of Logic and Bit Operations blocks”

References • IEC 61508-3, Table A.3 (3) ’Language subset’;
IEC 61508-3, Table A.3 (2) ’Strongly typed programming language’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (c) ’Enforcement of strong typing’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.4 (8) ’Strongly Typed Programming Language’

• DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

• MISRA-C:2004, Rule 12.6

See Also “hisl_0016: Usage of blocks that compute relational operators” on page 2-49

Last Changed R2013b

2-51

2 Simulink® Block Considerations

hisl_0018: Usage of Logical Operator block

ID: Title hisl_0018: Usage of Logical Operator block

To support unambiguous behavior of generated code, when using the
Logical Operator block,

Description

A Set the Output data type block parameter to Boolean.

Prerequisites “hisl_0045: Configuration Parameters > Optimization > Implement logic
signals as Boolean data (vs. double)” on page 5-25

Rationale A Avoid ambiguous behavior of generated code.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check usage of
Logic and Bit Operations blocks”

• By Task > Modeling Standards for ISO 26262 > “Check usage of
Logic and Bit Operations blocks”

By Task > Modeling Standards for EN 50128 > “Check usage of
Logic and Bit Operations blocks”

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
usage of Logic and Bit Operations blocks”

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related optimization settings”

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.3 (2) ’Strongly typed programming language’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (c) ’Enforcement of strong typing’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.4 (8) ’Strongly Typed Programming Language’

• DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

• MISRA-C:2004, Rule 12.6

Last Changed R2013b

2-52

Logic and Bit Operations

hisl_0019: Usage of Bitwise Operator block

ID: Title hisl_0019: Usage of Bitwise Operator block

To support unambiguous behavior, when using the Bitwise Operator block,

A Avoid signed integer data types as input to the block.

Description

B Choose an output data type that represents zero exactly.

Notes Bitwise operations on signed integers are not meaningful. If a shift
operation moves a signed bit into a numeric bit, or a numeric bit into a
signed bit, unpredictable and unwanted behavior can result.

Rationale A, B Support unambiguous behavior of generated code.

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.3 (2) ’Strongly typed programming language’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (c) ’Enforcement of strong typing’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’
EN 50128, Table A.4 (8) ’Strongly Typed Programming Language’

• MISRA-C:2004, Rule 12.7

See Also “hisf_0003: Usage of bitwise operations” on page 3-12in the Simulink
documentation

Last Changed R2013b

2-53

2 Simulink® Block Considerations

2-54

3

Stateflow Chart
Considerations

• “Chart Properties” on page 3-2

• “Chart Architecture” on page 3-11

3 Stateflow® Chart Considerations

Chart Properties

In this section...

“hisf_0001: Mealy and Moore semantics” on page 3-3

“hisf_0002: User-specified state/transition execution order” on page 3-5

“hisf_0009: Strong data typing (Simulink and Stateflow boundary)” on
page 3-7

“hisf_0011: Stateflow debugging settings” on page 3-9

3-2

Chart Properties

hisf_0001: Mealy and Moore semantics

ID: Title hisf_0001: Mealy and Moore semantics

To create Stateflow charts that implement a subset of Stateflow semantics,

A In the Chart properties dialog box, set State Machine Type to
Mealy or Moore.

Description

B Apply consistent settings to the Stateflow charts in a model.

Note Setting State Machine Type restricts the Stateflow semantics to pure
Mealy or Moore semantics. Mealy and Moore charts might be easier to
understand and use in high-integrity applications.

In Mealy charts, actions are associated with transitions. In the Moore
charts, actions are associated with states.

At compile time, the Stateflow software verifies that the chart semantics
comply with the formal definitions and rules of the selected type of state
machine. If the chart semantics are not in compliance, the software
provides a diagnostic message.

Rationale A, B Promote a clear modeling style.

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
state machine type of Stateflow charts”

• By Task > Modeling Standards for IEC 61508 > “Check state
machine type of Stateflow charts”

• By Task > Modeling Standards for ISO 26262 > “Check state
machine type of Stateflow charts”

• By Task > Modeling Standards for EN 50128 > “Check state
machine type of Stateflow charts”

3-3

3 Stateflow® Chart Considerations

ID: Title hisf_0001: Mealy and Moore semantics

References • IEC 61508-3,Table A.7 (2) ’Simulation/modeling’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.11 (3) ’Simulation’

• DO-331, Section MB.6.3.1.b ’High-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’
DO-331, Section MB.6.3.3.b ’Software architecture is consistent’
DO-331, Section MB.6.3.3.e ’Software architecture conform to standards’

See Also “Create Mealy and Moore Charts” in the Stateflow documentation

Last Changed R2013b

3-4

Chart Properties

hisf_0002: User-specified state/transition execution
order

ID: Title hisf_0002: User-specified state/transition execution order

Do the following to explicitly set the execution order for active states and
valid transitions in Stateflow charts:

A In the Chart Properties dialog box, select User specified
state/transition execution order.

B In the Stateflow Editor View menu, select Show Transition
Execution Order.

Description

C Set default transition to evaluate last.

Note Selecting User specified state/transition execution order restricts
the dependency of a Stateflow chart semantics on the geometric position
of parallel states and transitions.

Specifying the execution order of states and transitions allows you
to enforce determinism in the search order for active states and valid
transitions. You have control of the order in which parallel states are
executed and transitions originating from a source are tested for execution.
If you do not explicitly set the execution order, the Stateflow software
determines the execution order following a deterministic algorithm.

Selecting Show Transition Execution Order displays the transition
testing order.

Rationale A,
B, C

Promote an unambiguous modeling style.

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
Stateflow charts for ordering of states and transitions”

• By Task > Modeling Standards for IEC 61508 > “Check usage of
Stateflow constructs”

• By Task > Modeling Standards for ISO 26262 > “Check usage of
Stateflow constructs”

• By Task > Modeling Standards for EN 50128 > “Check usage of
Stateflow constructs”

3-5

3 Stateflow® Chart Considerations

ID: Title hisf_0002: User-specified state/transition execution order

References This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ’Language subset’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (f) ’Use of unambiguous graphical representation’

• EN 50128, Table A.4 (11) ’Language Subset’

• DO-331, Section MB.6.3.3.b ’Software architecture is consistent’
DO-331, Section MB.6.3.3.e ’Software architecture conform to standards ’

See Also The following topics in the Stateflow documentation

• “Transition Testing Order in Multilevel State Hierarchy”

• “Execution Order for Parallel States”

Last Changed R2013b

3-6

Chart Properties

hisf_0009: Strong data typing (Simulink and
Stateflow boundary)

ID: Title hisf_0009: Strong data typing (Simulink and Stateflow boundary)

To support strong data typing between Simulink and Stateflow ,Description

A Select Use Strong Data Typing with Simulink I/O.

Notes By default, input to and output from Stateflow charts are of type double.
To interface directly with Simulink signals of data types other than double,
select Use Strong Data Typing with Simulink I/O. In this mode, data
types between the Simulink and Stateflow boundary are strongly typed,
and the Simulink software does not treat the data types as double. The
Stateflow chart accepts input signals of any data type supported by the
Simulink software, provided that the type of the input signal matches the
type of the corresponding Stateflow input data object. Otherwise, the
software reports a type mismatch error.

Rationale A Support strongly typed code.

Model Advisor
Checks • By Task > Modeling Standards for IEC 61508 > “Check usage of

Stateflow constructs”

• By Task > Modeling Standards for ISO 26262 > “Check usage
of Stateflow constructs”

• By Task > Modeling Standards for EN 50128 > “Check usage of
Stateflow constructs”

References • IEC 61508-3, Table A.3 (2) ‘Strongly typed programming language’

• ISO 26262-6, Table 1 (c) ’Enforcement of strong typing’

• EN 50128, Table A.4 (8) ’Strongly Typed Programming Language’

• DO-331, Section MB.6.3.1.b ’High-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to

3-7

3 Stateflow® Chart Considerations

ID: Title hisf_0009: Strong data typing (Simulink and Stateflow boundary)

standards’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

• MISRA-C:2004, Rules 10.1, 10.2, 10.3 and 10.4

Last Changed R2013b

3-8

Chart Properties

hisf_0011: Stateflow debugging settings

ID: Title hisf_0011: Stateflow debugging settings

To protect against unreachable code and indeterminate execution time,

A Select the following run-time diagnostics:

• In the Configuration Parameters dialog box, on the Simulation
Target pane, select:

Enable debugging/animation
Enable overflow detection (with debugging)

• In the Stateflow Debugging window, select

Transition Conflict
Detect Cycles
Data Range

Description

B For each truth table in the model, in the Settings menu of the Truth
Table Editor, set the following parameters to Error:

Underspecified
Overspecified

Notes Run-time diagnostics are only triggered during simulation. If the error
condition is not reached during simulation, the error message is not
triggered for code generation.

Rationale A, B Protect against unreachable code and unpredictable execution time.

Model Advisor
Checks • By Task > Modeling Standards for DO-178C/DO-331 > “Check

Stateflow debugging options”

• By Task > Modeling Standards for IEC 61508 > “Check usage of
Stateflow constructs”

• By Task > Modeling Standards for ISO 26262 > “Check usage
of Stateflow constructs”

• By Task > Modeling Standards for EN 50128 > “Check usage of
Stateflow constructs”

3-9

3 Stateflow® Chart Considerations

ID: Title hisf_0011: Stateflow debugging settings

References • IEC 61508-3, Table A.7 (2) ’Simulation/modeling’

• ISO 26262 Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.3 (1) ’Defensive Programming’
EN 50128, Table A.11 (3) ’Simulation’

• DO-331, Section MB.6.3.1.b ’High-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’

Last Changed R2014a

3-10

Chart Architecture

Chart Architecture

In this section...

“hisf_0003: Usage of bitwise operations” on page 3-12

“hisf_0004: Usage of recursive behavior” on page 3-13

“hisf_0007: Usage of junction conditions (maintaining mutual exclusion)”
on page 3-15

“hisf_0010: Usage of transition paths (looping out of parent of source and
destination objects)” on page 3-16

“hisf_0012: Chart comments” on page 3-18

“hisf_0013: Usage of transition paths (crossing parallel state boundaries)”
on page 3-19

“hisf_0014: Usage of transition paths (passing through states)” on page 3-21

“hisf_0015: Strong data typing (casting variables and parameters in
expressions)” on page 3-22

3-11

3 Stateflow® Chart Considerations

hisf_0003: Usage of bitwise operations

ID: Title hisf_0003: Usage of bitwise operations

When using bitwise operations in Stateflow blocks,Description

A Avoid signed integer data types as operands to the bitwise operations.

Notes Normally, bitwise operations are not meaningful on signed integers.
Undesired behavior can occur. For example, a shift operation might move
the sign bit into the number, or a numeric bit into the sign bit.

Rationale A Promote unambiguous modeling style.

Model Advisor
Checks

By Task > Modeling Standards for MAAB > Stateflow > “Check for
bitwise operations in Stateflow charts”

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.3 (2) ’Strongly typed programming language’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (c) ’Enforcement of strong typing’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.1.b ’High-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section 6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

• MISRA-C:2004, Rule 12.7 ’Bitwise operators shall not be applied to
operands whose underlying type is signed’

See Also “hisl_0019: Usage of Bitwise Operator block”

Last Changed R2013b

3-12

Chart Architecture

hisf_0004: Usage of recursive behavior

ID: Title hisf_0004: Usage of recursive behavior

To support bounded function call behavior, avoid using design patterns
that include unbounded recursive behavior. Recursive behavior is bound if
you do the following:

A Use an explicit termination condition that is local to the recursive
call.

Description

B Make sure the termination condition is reached.

Notes This rule only applies if a chart is a classic Stateflow chart. If “hisf_0001:
Mealy and Moore semantics” on page 3-3 is followed, recursive behavior
is prevented due to restrictions in the chart semantics. Additionally, you
can detect the error during simulation by enabling the Stateflow diagnostic
Detect Cycles.

Rationale A, B Promote bounded function call behavior.

References • IEC 61508-3, Table B.1 (6) ’Limited use of recursion’

• ISO 26262-6, Table 9 (j) ’No recursions’

• EN 50128, Table A.12 (6) ’Limited Use of Recursion’

• DO-331, Section MB.6.3.1.b ’High-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

• MISRA-C:2004, Rule 16.2

Last Changed R2013b

3-13

3 Stateflow® Chart Considerations

ID: Title hisf_0004: Usage of recursive behavior

There are multiple patterns in Stateflow that can result in unbounded
recursion.

Recursive Function Calls

Examples

When the default state A is entered, event Evn is broadcast in the entry
action of A. Evn results in a recursive call of the interpretation algorithm.
Since A is active, the outgoing transition of A is tested. Since the current
event Evn matches the transition event (and because of the absence of
condition) the condition action is executed, broadcasting Evn again. This
results in a new call of the interpretation algorithm which repeats the same
sequence of steps until stack overflow.

Recursive Function Calls

3-14

Chart Architecture

hisf_0007: Usage of junction conditions (maintaining
mutual exclusion)

ID: Title hisf_0007: Usage of junction conditions (maintaining mutual
exclusion)

To enhance clarity and prevent the generation of unreachable code,Description

A Make junction conditions mutually exclusive.

Notes You can use this guideline to maintain a modeling language subset in
high-integrity projects.

Rationale A Enhance clarity and prevent generation of unreachable code.

References • DO-331, Section MB.6.3.1.b ’High-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.1.d ’High-level requirements are verifiable’
DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.2.d ’Low-level requirements are verifiable’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’

Last Changed R2012b

3-15

3 Stateflow® Chart Considerations

hisf_0010: Usage of transition paths (looping out of
parent of source and destination objects)

ID: Title hisf_0010: Usage of transition paths (looping out of parent of
source and destination objects

Transitions that loop out of the parent of the source and destination objects
are typically unintentional and cause the parent to deactivate.

Description

A Avoid using these transitions.

Notes You can use this guideline to maintain a modeling language subset in
high-integrity projects.

Rationale A Promote a clear modeling style.

References • DO-331, Section MB.6.3.1.b ’High-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

Last Changed R2012b

Examples

3-16

Chart Architecture

ID: Title hisf_0010: Usage of transition paths (looping out of parent of
source and destination objects

3-17

3 Stateflow® Chart Considerations

hisf_0012: Chart comments

ID: Title hisf_0012: Chart comments

To enhance traceability between generated code and a model,Description

A Add comments to the following Stateflow objects:

• Transitions

Rationale A Enhance traceability between generated code and the corresponding
model.

References • DO-331, Section MB.6.3.4.e ’Source code is traceable to low-level
requirements’

Last Changed R2012b

3-18

Chart Architecture

hisf_0013: Usage of transition paths (crossing
parallel state boundaries)

ID: Title hisf_0013: Usage of transition paths (crossing parallel state
boundaries)

To avoid creating diagrams that are hard to understand,Description

A Avoid creating transitions that cross from one parallel state to
another.

Notes You can use this guideline to maintain a modeling language subset in
high-integrity projects.

Rationale A Enhance model readability.

Last Changed R2010b

Example In the following example, when Out_A is 4, both parent states (A_Parent
and B_Parent) are reentered. Reentering the parent states resets the
values of Out_A and Out_B to zero.

3-19

3 Stateflow® Chart Considerations

ID: Title hisf_0013: Usage of transition paths (crossing parallel state
boundaries)

3-20

Chart Architecture

hisf_0014: Usage of transition paths (passing
through states)

ID: Title hisf_0014: Usage of transition paths (passing through states)

To avoid creating diagrams that are confusing and include transition paths
without benefit,

Description

A Avoid transition paths that go into and out of a state without ending
on a substate.

Notes You can use this guideline to maintain a modeling language subset in
high-integrity projects.

Rationale A Enhance model readability.

References • DO-331, Section MB.6.3.1.b ’High-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’

Last Changed R2012b

Examples

3-21

3 Stateflow® Chart Considerations

hisf_0015: Strong data typing (casting variables and
parameters in expressions)

ID: Title hisf_0015: Strong data typing (casting variables and parameters
in expressions)

To facilitate strong data typing,Description

A Explicitly type cast variables and parameters of different data types
in:

• Transition evaluations

• Transition assignments

• Assignments in states

Notes The Stateflow software automatically casts variables of different type
into the same data type. This guideline helps clarify data types of the
intermediate variables.

Rationale A Apply strong data typing.

References • DO-331, Section MB.6.3.1.b ’High-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.1.e ’High-level requirements conform to
standards’
DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.2.e ’Low-level requirements conform to
standards’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

3-22

Chart Architecture

ID: Title hisf_0015: Strong data typing (casting variables and parameters
in expressions)

Last Changed R2012b

Examples

Recommended

Not Recommended

3-23

3 Stateflow® Chart Considerations

3-24

4

MATLAB Function
and MATLAB Code
Considerations

• “MATLAB Functions” on page 4-2

• “MATLAB Code” on page 4-11

4 MATLAB® Function and MATLAB® Code Considerations

MATLAB Functions

In this section...

“himl_0001: Usage of standardized MATLAB function headers” on page 4-3

“himl_0002: Strong data typing at MATLAB function boundaries” on page
4-4

“himl_0003: Limitation of MATLAB function complexity” on page 4-6

“himl_0005: Usage of global variables in MATLAB functions” on page 4-8

4-2

MATLAB® Functions

himl_0001: Usage of standardized MATLAB function
headers

ID: Title himl_0001: Usage of standardized MATLAB function headers

Description When using MATLAB functions, use a standardized header to provide
information about the purpose and use of the function.

Rationale A standardized header improves the readability and documentation of
MATLAB functions. The header should provide a function description and
usage information.

See Also • MathWorks Automotive Advisory Board (MAAB) guideline na_0025:
MATLAB Function Header

• Orion GN&C: MATLAB and Simulink Standards, jh_0073: eML Header

• “MATLAB Function Block Editor”

Last Changed R2014a

Examples A typical standardized function header includes:
• Function name

• Description

• Inputs and outputs (if possible, include size and type)

• Assumptions and limitations

• Revision history

4-3

http://www.mathworks.com/aerospace-defense/standards/FltDyn-CEV-08-148_MATLAB_Standards_v9_20111202.pdf

4 MATLAB® Function and MATLAB® Code Considerations

himl_0002: Strong data typing at MATLAB function
boundaries

ID: Title himl_0002: Strong data typing at MATLAB function boundaries

Description To support strong data typing at the interfaces of MATLAB functions,
explicitly define the interface for input signals, output signals, and
parameters, by setting:

• Complexity

• Type

Rationale Defined interfaces:

• Allow consistency checking of interfaces.

• Prevent unintended generation of different functions for different input
and output types.

• Simplify testing of functions by limiting the number of test cases.

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > “Check for
MATLAB Function block interfaces with inherited properties”

• By Task > Modeling Standards for ISO 26262 > “Check for MATLAB
Function block interfaces with inherited properties”

• By Task > Modeling Standards for EN 50128 > “Check for MATLAB
Function block interfaces with inherited properties”

• By Task > Modeling Standards for IEC 61508> “Check for MATLAB
Function block interfaces with inherited properties”

References • IEC 61508-3, Table B.9 (5) - Fully defined interface

• ISO 26262-6, Table 1 (1f) - Use of unambiguous graphical representation

• EN 50128, Table A.1 (11) - Software Interface Specifications

• DO-331, Section MB.6.3.2.b - Low-level requirements are accurateand
consistent

4-4

MATLAB® Functions

ID: Title himl_0002: Strong data typing at MATLAB function boundaries

See Also • MathWorks Automotive Advisory Board (MAAB) guideline na_0034:
MATLAB Function block input/output settings

• Orion GN&C: MATLAB and Simulink Standards, jh_0063: eML block
input / output settings

• “MATLAB Function Block Editor”

Last Changed R2014a

Examples Recommended:
In the “Ports and Data Manager”, specify the complexity and type of input
u1 as follows:

• Complexity to Off

• Type to uint16

Not Recommended:
In the “Ports and Data Manager”, do not specify the complexity and type
of input u1 as follows:

• Complexity to Inherited

• Type to Inherit: Same as Simulink.

Note To access the “Ports and Data Manager”, from the toolbar of the
“MATLAB Function Block Editor”, select Edit Data.

4-5

http://www.mathworks.com/aerospace-defense/standards/FltDyn-CEV-08-148_MATLAB_Standards_v9_20111202.pdf

4 MATLAB® Function and MATLAB® Code Considerations

himl_0003: Limitation of MATLAB function complexity

ID: Title himl_0003: Limitation of MATLAB function complexity

Description When using MATLAB functions, limit the size and complexity of MATLAB
code. The size and complexity of MATLAB functions is characterized by:

• Lines of code

• Nested function levels

• Cyclomatic complexity

• Density of comments (ratio of comment lines to lines of code)

Note Size and complexity limits can vary across projects. Typical limits might
be as described in this table:

Metric Limit

Lines of code 60 per MATLAB function

Nested function levels 31,2

Cyclomatic complexity 15

Density of comments 0.2 comment lines per line of code
1Pure Wrappers to external functions are not counted as separate levels.
2Standard MATLAB library functions do not count as separate levels.

Rationale • Readability

• Comprehension

• Traceability

• Maintainability

• Testability

4-6

MATLAB® Functions

ID: Title himl_0003: Limitation of MATLAB function complexity

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
MATLAB Function block metrics”

• By Task > Modeling Standards for ISO 26262 > “Check MATLAB
Function block metrics”

• By Task > Modeling Standards for EN 50128 > “Check MATLAB
Function block metrics”

• By Task > Modeling Standards for IEC 61508> “Check MATLAB
Function block metrics”

References • IEC 61508-3, Table B.9 (5) - Fully defined interface

• ISO 26262-6, Table 1 (1f) - Use of unambiguous graphical representation

• EN 50128, Table A.1(11) - Software Interface Specifications

• DO-331, Sections MB.6.3.1.e - High-level requirements conform to
standards
DO-331, Sections MB.6.3.2.e - Low-level requirements conform to
standards

See Also • MathWorks Automotive Advisory Board (MAAB) guideline na_0016:
Source lines of MATLAB Functions

• MathWorks Automotive Advisory Board (MAAB) guideline na_0017:
Number of called function levels

• MathWorks Automotive Advisory Board (MAAB) guideline na_0018:
Number of nested if/else and case statement

• Orion GN&C: MATLAB and Simulink Standards, jh_0084: eML
Comments

• “MATLAB Function Block Editor”

Last Changed R2014a

4-7

http://www.mathworks.com/aerospace-defense/standards/FltDyn-CEV-08-148_MATLAB_Standards_v9_20111202.pdf

4 MATLAB® Function and MATLAB® Code Considerations

himl_0005: Usage of global variables in MATLAB
functions

ID: Title himl_0005: Usage of global variables in MATLAB functions

Description Avoid using global variables in MATLAB functions. To access shared data,
use signal lines or persistent data.

Notes Using global data in MATLAB code requires the definition of Data Store
Memory blocks or Custom Storage class objects. If the read and write
access order is not specified correctly, usage of this type of storage can
lead to unexpected results.

Rationale • Readability

• Maintainability

• Deterministic Behavior

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
MATLAB code for global variables”

• By Task > Modeling Standards for IEC-61508 > “Check MATLAB
code for global variables”

• By Task > Modeling Standards for EN 50128 > “Check MATLAB
code for global variables”

• By Task > Modeling Standards for ISO-26262 > “Check MATLAB
code for global variables”

References • IEC 61508-3, Table A.3 (3) ’Language subset’

• ISO 26262-6, Table 1(b) ’Use of language subsets’

• EN 50128, Table A.4 (11) ’Language Subset’

• DO-331, Section MB.6.3.3.b ’Consistency’

See Also • na_0024: Global Variables

• “hisl_0013: Usage of data store blocks”

4-8

MATLAB® Functions

ID: Title himl_0005: Usage of global variables in MATLAB functions

Last Changed R2014a

Examples • Recommended

function [Y,newG] = ...
fcn(U,oldG)
%#codegen
Y = oldG * U;
newG = oldG + 1;

end

• Recommended

function Y = fcn(U)
%#codegen
persistent G;
if isempty(G)

G = 1;
end

4-9

4 MATLAB® Function and MATLAB® Code Considerations

ID: Title himl_0005: Usage of global variables in MATLAB functions

• Not Recommended

Write to global data function:

function fcn(U)
%#codegen
global G;
G = U;

End

Read from global data function:

function Y = fcn
%#codegen
global G;
Y = G;

end

4-10

MATLAB® Code

MATLAB Code

In this section...

“himl_0004: MATLAB Code Analyzer recommendations for code generation”
on page 4-11

“himl_0006: MATLAB code if / elseif / else patterns” on page 4-15

“himl_0007: MATLAB code switch / case / otherwise patterns” on page 4-17

“himl_0008: MATLAB code relational operator data types” on page 4-20

“himl_0009: MATLAB code with equal / not equal relational operators”
on page 4-22

“himl_0010: MATLAB code with logical operators and functions” on page
4-24

himl_0004: MATLAB Code Analyzer
recommendations for code generation

ID: Title himl_0004: MATLAB Code Analyzer recommendations for code
generation

When using MATLAB code:

A To activate MATLAB Code Analyzer messages for code generations,
use the %#codegen directive in external MATLAB functions.

Description

B Review the MATLAB Code Analyzer messages. Either:

• Implement the recommendations or

• Justify not following the recommendations with
%#ok<message-ID(S)> directives in the MATLAB
function. Do not use %#ok without specific message-IDs.

Notes The MATLAB Code Analyzer messages provide identifies potential errors,
problems, and opportunities for improvement in the code.

4-11

4 MATLAB® Function and MATLAB® Code Considerations

ID: Title himl_0004: MATLAB Code Analyzer recommendations for code
generation

A In external MATLAB functions, the %#codegen directive activates
MATLAB Code Analyzer messages for code generation.

Rationale

B • Following MATLAB Code Analyzer recommendations helps to:

- Generate efficient code.

- Follow best code generation practices

- Avoid using MATLAB features not supported for code
generation.

- Avoid code patterns which potentially influence safety.

• Not following MATLAB Code Analyzer recommendations are
justified with message id (e.g. %#ok<NOPRT>.

In the MATLAB function, using %#ok without a message id
justifies the full line, potentially hiding issues.

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > “Check
MATLAB Code Analyzer messages”

• By Task > Modeling Standards for IEC-61508 > “Check MATLAB
Code Analyzer messages”

• By Task > Modeling Standards for EN 50128 > “Check MATLAB
Code Analyzer messages”

• By Task > Modeling Standards for ISO-26262 > “Check MATLAB
Code Analyzer messages”

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.1.b ’Accuracy and consistency’
DO-331, Section MB.6.3.2.b ’Accuracy and consistency’

4-12

MATLAB® Code

ID: Title himl_0004: MATLAB Code Analyzer recommendations for code
generation

See Also “Check Code for Errors and Warnings”

Last Changed R2014a

Examples Recommended

• Activate MATLAB Code Analyzer messages for code generations:

%#codegen
function y = function(u)

y = inc_u(u));
end
function yy = inc_u(uu)

yy = uu + 1;
end

• Justify missing ; and value assigned might be unused:

y = 2*u %#ok<NOPRT,NAGSU> output for debugging
...
y = 3*u;

• If output is not desired and assigned value is unused, remove the line y
= 2*u ...:

y = 3*u;

Not Recommended

• External MATLAB file used in Simulink with missing %#codegen
directive:

function y = function(u)
% nested functions can't be used for code generation
function yy = inc_u(uu)

yy = uu + 1;
end
y = inc_u(u));

end

4-13

4 MATLAB® Function and MATLAB® Code Considerations

ID: Title himl_0004: MATLAB Code Analyzer recommendations for code
generation

• All messages in line are justified by using %#ok without a message ID:

% missing ';' and the value might be unused
y = 2*u %#ok

y = 3*u;

• No justification:

% missing justification for missing ';' and unnecessary '[..]'
y= [2*u]

4-14

MATLAB® Code

himl_0006: MATLAB code if / elseif / else patterns

ID: Title himl_0006: MATLAB code if / elseif / else patterns

Description For MATLAB code with if / elseif/ else constructs, terminate the
constructs with an else statement that includes at least a meaningful
comment. A final else statement is not required if there is no elseif.

Rationale • Defensive programming

• Readability

• Traceability

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1(b) ’Use of language subsets’
ISO 26262-6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.1.e ’Conformance to standards’
DO-331, Section MB.6.3.2.e ’Conformance to standards’
DO-331, Section MB.6.3.3.e ’Conformance to standards’

• MISRA-C:2004, Rule 14.10
MISRA-C:2004, Rule 15.7

See Also • “hisl_0010: Usage of If blocks and If Action Subsystem blocks”

Last Changed R2014a

Examples Recommended

•

if u > 0
y = 1;

end

•

if u > 0
y = 1;

elseif u < 0

4-15

4 MATLAB® Function and MATLAB® Code Considerations

ID: Title himl_0006: MATLAB code if / elseif / else patterns

y = -1;
else

y = 0;
end

•

y = 0;
if u > 0

y = 1;
elseif u < 0

y = -1;
else

% handled before if
end

Not Recommended

•

% empty else
y = 0;
if u > 0

y = 1;
elseif u < 0

y = -1;
else
end

•

% missing else
y = 0;
if u > 0

y = 1;
elseif u < 0

y = -1;
end

4-16

MATLAB® Code

himl_0007: MATLAB code switch / case / otherwise
patterns

ID: Title himl_0007: MATLAB code switch / case / otherwise patterns

Description For MATLAB code with switch statements, include:

• At least two case statements.

• An otherwise statement that at least includes a meaningful comment.

Note If there is only one case and one otherwise statement, consider using an
if / else statement.

Rationale • Defensive programming

• Readability

• Traceability

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1(b) ’Use of language subsets’
ISO 26262-6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.1.e ’Conformance to standards’
DO-331, Section MB.6.3.2.e ’Conformance to standards’
DO-331, Section MB.6.3.3.e ’Conformance to standards’

• MISRA-C:2004, Rule 15.3
MISRA-C:2004, Rule 15.5
MISRA-C:2004, Rule 16.4
MISRA-C:2004, Rule 16.6

See Also • na_0022: Recommended patterns for Switch/Case statements

• “hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks”

4-17

4 MATLAB® Function and MATLAB® Code Considerations

ID: Title himl_0007: MATLAB code switch / case / otherwise patterns

Last Changed R2014a

Examples Recommended

•

switch u
case 1

y = 3;
case 3

y = 1;
otherwise

y = 1;
end

•

y = 0;
switch u

case 1
y = 3;

case 3
y = 1;

otherwise
% handled before switch

end

Not Recommended

•

% no case statements
switch u

otherwise
y = 1;

end

•

% empty otherwise statement

4-18

MATLAB® Code

ID: Title himl_0007: MATLAB code switch / case / otherwise patterns

switch u
case 1

y = 3;
case 3

y = 1;
otherwise

end

•

% no otherwise statement
switch u

case 1
y = 3;

end

4-19

4 MATLAB® Function and MATLAB® Code Considerations

himl_0008: MATLAB code relational operator data
types

ID: Title himl_0008: MATLAB code relational operator data types

Description For MATLAB code with relational operators, use the same data type for
the left and right operands.

Note If the two operands have different data types, MATLAB will promote both
operands to a common data type. This can lead to unexpected results.

Rationale • Prevent implicit casts

• Prevent unexpected results

References • IEC 61508-3, Table A.3 (2) ’Strongly typed programming language’
IEC 61508-3, Table A.3 (3) ’Language subset’

• ISO 26262-6, Table 1(c) ’Enforcement of strong typing’
ISO 26262-6, Table 1(b) ’Use of language subsets’

• EN 50128, Table A.4 (8) ’Strongly Typed Programming Language’
EN 50128, Table A.4 (11) ’Language Subset’

• DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

See Also • “hisl_0016: Usage of blocks that compute relational operators”

• “hisl_0017: Usage of blocks that compute relational operators (2)”

Last Changed R2014a

Examples Recommended

•

myBool == true
myInt8 == int8(1)

Not Recommended

•

myBool == 1
myInt8 == true

4-20

MATLAB® Code

ID: Title himl_0008: MATLAB code relational operator data types

myInt8 == 1
myInt8 == int16(1)
myEnum1.EnumVal == int32(1)

4-21

4 MATLAB® Function and MATLAB® Code Considerations

himl_0009: MATLAB code with equal / not equal
relational operators

ID: Title himl_0009: MATLAB code with equal / not equal relational
operators

Description For MATLAB code with equal or not equal relational operators, avoid using
the following data types:

• Single

• Double

• Types derived from single or double data types

Note Consider the following code fragments:

1 sqrt(2)^2 == 2

2 sqrt(2^2) == 2

Mathematically, both fragments are true. However, because of floating
point rounding effects, the results are:

1 false

2 true

Rationale • Prevent unexpected results

References • IEC 61508-3, Table A.3 (3) ’Language subset’
IEC 61508-3, Table A.4 (3) ’Defensive programming’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
EN 50128, MB.6.3.2.g ’ ’Defensive Programming’

• MISRA-C:2004, Rule 13.3

4-22

MATLAB® Code

ID: Title himl_0009: MATLAB code with equal / not equal relational
operators

See Also • jc_0481: Use of hard equality comparisons for floating point numbers
in Stateflow

• “hisl_0016: Usage of blocks that compute relational operators”

Last Changed R2014a

Examples Recommended

•

myDouble >= 0.99 && myDouble <= 1.01; % test range

Not Recommended

•

myDouble == 1.0
mySingle ~= 15.0

4-23

4 MATLAB® Function and MATLAB® Code Considerations

himl_0010: MATLAB code with logical operators and
functions

ID: Title himl_0010: MATLAB code with logical operators and functions

Description For logical operators and logical functions in MATLAB code, use logical
data types

Notes Logical operators: &&, ||, ~

Logical functions: and, or, not, xor

Rationale • Prevent unexpected results

References • IEC 61508-3, Table A.3 (2) ’Strongly typed programming language’
IEC 61508-3, Table A.3 (3) ’Language subset’

• ISO 26262-6, Table 1(c) ’Enforcement of strong typing’
ISO 26262-6, Table 1(b) ’Use of language subsets’

• EN 50128, Table A.4 (8) ’Strongly Typed Programming Language’
EN 50128, Table A.4 (11) ’Language Subset’

• DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

Last Changed R2014a

Examples Recommended

•

~myLogical
(myInt8 > int8(4)) && myLogical
xor(myLogical1,myLogical2)

Not Recommended

•

~myInt8
myInt8 && myDouble

4-24

5

Configuration Parameter
Considerations

• “Solver” on page 5-2

• “Diagnostics” on page 5-7

• “Optimizations” on page 5-24

5 Configuration Parameter Considerations

Solver

In this section...

“hisl_0040: Configuration Parameters > Solver > Simulation time” on
page 5-3

“hisl_0041: Configuration Parameters > Solver > Solver options” on page 5-4

“hisl_0042: Configuration Parameters > Solver > Tasking and sample time
options” on page 5-5

5-2

Solver

hisl_0040: Configuration Parameters > Solver >
Simulation time

ID: Title hisl_0040: Configuration Parameters > Solver > Simulation time

For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Solver pane, set parameters for simulation
time as follows:

A Start time to 0.0.

Description

B Stop time to a positive value that is less than the value of
Application lifespan (days).

Note Simulink allows nonzero start times for simulation. However, production
code generation requires a zero start time.

By default, Application lifespan (days) is inf. If you do not change this
setting, any positive value for Stop time is valid.

You specify Stop time in seconds and Application lifespan (days) is
in days.

Rationale A Generate code that is valid for production code generation.

References • IEC 61508-3, Table A.3 (3) ’Language subset’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’

• EN 50128, Table A.4 (11) ’Language Subset’

See Also • “hisl_0048: Configuration Parameters > Optimization > Application
lifespan (days)” on page 5-27

• Solver Pane section of the Simulink documentation

Last Changed R2013b

5-3

5 Configuration Parameter Considerations

hisl_0041: Configuration Parameters > Solver >
Solver options

ID: Title hisl_0041: Configuration Parameters > Solver > Solver options

For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Solver pane, set parameters for solvers as
follows:

A Type to Fixed-step.

Description

B Solver to discrete (no continuous states).

Note Generating code for production requires a fixed-step, discrete solver.

Rationale A, B Generate code that is valid for production code generation.

References • IEC 61508-3, Table A.3 (3) ’Language subset’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’

• EN 50128, Table A.4 (11) ’Language Subset’

See Also “Solver Pane” in the Simulink documentation

Last Changed R2013b

5-4

Solver

hisl_0042: Configuration Parameters > Solver >
Tasking and sample time options

ID: Title hisl_0042: Configuration Parameters > Solver > Tasking and
sample time options

For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Solver pane, set parameters for tasking
and sample time as follows:

A Periodic sample time constraint to Specified and assign values
to Sample time properties.

Caution If you use a referenced model as a reusable function,
set Periodic sample time constraint to Ensure sample time
independent.

B Tasking mode for periodic sample times to SingleTasking or
MultiTasking.

Description

C Clear the parameter Automatically handle data transfers
between tasks.

Notes Selecting the Automatically handle data transfers between tasks
check box might result in inserting rate transition code without a
corresponding model construct. This might impede establishing full
traceability or showing that unintended functions are not introduced.

You can select or clear the Higher priority value indicates higher task
priority check box . Selecting this check box determines whether the
priority for Sample time properties uses the lowest values as highest
priority, or the highest values as highest priority.

Rationale A,
B, C

Support fully specified models and unambiguous code.

5-5

5 Configuration Parameter Considerations

ID: Title hisl_0042: Configuration Parameters > Solver > Tasking and
sample time options

References • IEC 61508-3, Table A.3 (3) ’Language subset’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’

• EN 50128, Table A.4 (11) ’Language Subset’

• DO-331, Section MB.6.3.4.e ’Source code is traceable to low-level
requirements’

See Also “Solver Pane” in the Simulink documentation

Last Changed R2013b

5-6

Diagnostics

Diagnostics

In this section...

“hisl_0043: Configuration Parameters > Diagnostics > Solver” on page 5-8

“hisl_0044: Configuration Parameters > Diagnostics > Sample Time” on
page 5-10

“hisl_0301: Configuration Parameters > Diagnostics > Compatibility” on
page 5-13

“hisl_0302: Configuration Parameters > Diagnostics > Data Validity >
Parameters” on page 5-14

“hisl_0303: Configuration Parameters > Diagnostics > Data Validity >
Merge block” on page 5-15

“hisl_0304: Configuration Parameters > Diagnostics > Data Validity >
Model Initialization” on page 5-16

“hisl_0305: Configuration Parameters > Diagnostics > Data Validity >
Debugging” on page 5-17

“hisl_0306: Configuration Parameters > Diagnostics > Connectivity >
Signals” on page 5-18

“hisl_0307: Configuration Parameters > Diagnostics > Connectivity >
Buses” on page 5-19

“hisl_0308: Configuration Parameters > Diagnostics > Connectivity >
Function calls” on page 5-20

“hisl_0309: Configuration Parameters > Diagnostics > Type Conversion”
on page 5-21

“hisl_0310: Configuration Parameters > Diagnostics > Model Referencing”
on page 5-22

“hisl_0311: Configuration Parameters > Diagnostics > Stateflow” on page
5-23

5-7

5 Configuration Parameter Considerations

hisl_0043: Configuration Parameters > Diagnostics
> Solver

ID: Title hisl_0043: Configuration Parameters > Diagnostics > Solver

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of
the Solver section to:

Compile-Time • Algebraic loop to error.

• Minimize algebraic loop to error.

• Unspecified inheritability of sample times to
error.

• Automatic solver parameter selection to error.

• State name clash to warning.

Run-Time • Block priority violation to error if you are using
block priorities.

Note Enabling diagnostics pertaining to the solver provides information to detect
violations of other guidelines.

If Diagnostic Parameter... Is Not Set As Indicated, Then ...

Algebraic loop Automatic breakage of algebraic
loops can go undetected and might
result in unpredictable block order
execution.

Minimize algebraic loop Automatic breakage of algebraic
loops can go undetected and might
result in unpredictable block order
execution.

Block priority violation Block execution order can include
undetected conflicts that might

5-8

Diagnostics

ID: Title hisl_0043: Configuration Parameters > Diagnostics > Solver

result in unpredictable block order
execution.

Unspecified inheritability of
sample times

An S-function that is not explicitly
set to inherit sample time can
go undetected and result in
unpredictable behavior.

Automatic solver parameter
selection

An automatic change to the solver,
step size, or simulation stop time
can go undetected and might the
operation of generated code.

State name clash A name being used for more than
one state might go undetected.

You can set the following solver diagnostic parameters to anyvalue:

Min step size violation
Sample hit time adjusting
Consecutive zero crossings violation
Solver data inconsistency
Extraneous discrete derivative signals

Rationale A Support generation of robust and unambiguous code.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for solvers”

References • IEC 61508-3, Table A.3 (3) ’Language subset’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’

• EN 50128, Table A.4 (11) ’Language Subset’

• DO-331, MB.6.3.3.e ’Software architecture conforms to standards’

See Also • “Diagnostics Pane: Solver” in the Simulink documentation

• jc_0021: Model diagnostic settings in the Simulink documentation

Last Changed R2013b

5-9

5 Configuration Parameter Considerations

hisl_0044: Configuration Parameters > Diagnostics
> Sample Time

ID: Title hisl_0044: Configuration Parameters > Diagnostics > Sample Time

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of
the Sample Time section to error:

Compile-Time
• Source block specifies -1 sample time

• Discrete used as continuous

• Multitask rate transition

• Single task rate transition

• Multitask conditionally executed subsystem

• Tasks with equal priority

• Enforce sample times specified by Signal
Specification blocks

If the target system does not allow preemption
between tasks that have equal priority, set Tasks
with equal priority to none.

Run-Time Not applicable

Note Enabling diagnostics pertaining to the solver provides information to detect
violations of other guidelines.

If Diagnostic Parameter... Is Not Set As Indicated, Then ...

Source block specifies -1 sample
time

Use of inherited sample times for
a source block, such as Sine Wave,
can go undetected and result in
unpredictable execution rates for
source and downstream blocks.

Discrete used as continuous Input signals with continuous
sample times for a discrete
block, such as Unit Delay, can go
undetected. You cannot use signals

5-10

Diagnostics

ID: Title hisl_0044: Configuration Parameters > Diagnostics > Sample Time

with continuous sample times
for embedded real-time software
applications

Multitask rate transition Invalid rate transitions
between two blocks operating
in multitasking mode can go
undetected. You cannot use invalid
rate transitions for embedded
real-time software applications.

Single task rate transition A rate transition between two
blocks operating in single-tasking
mode can go undetected. You
cannot use single-tasking rate
transitions for embedded real-time
software applications.

Multitask conditionally
executed subsystems

A conditionally executed multirate
subsystem, operating in
multitasking mode. might go
undetected and corrupt data
or show unexpected behavior
in a target system that allows
preemption.

Tasks with equal priority Two asynchronous tasks with equal
priority might go undetected and
show unexpected behavior in target
systems that allow preemption.

Enforce sample times specified
by Signal Specification blocks

Inconsistent sample times for a
Signal Specification block and
the connected destination block
might go undetected and result in
unpredictable execution rates.

Rationale A Support generation of robust and unambiguous code.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for sample time”

5-11

5 Configuration Parameter Considerations

ID: Title hisl_0044: Configuration Parameters > Diagnostics > Sample Time

References • IEC 61508-3, Table A.3 (3) ’Language subset’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’

• EN 50128, Table A.4 (11) ’Language Subset’

• DO-331, Section MB.6.3.1.b ’High-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.3.b ’Software architecture is consistent’

See Also “Diagnostics Pane: Sample Time” in the Simulink documentation

Last Changed R2013b

5-12

Diagnostics

hisl_0301: Configuration Parameters > Diagnostics
> Compatibility

ID: Title hisl_0301: Configuration Parameters > Diagnostics > Compatibility

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of the
Compatibility section to:

Compile-Time S—function upgrades needed > error

Run-Time Not applicable

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation
speed. For simulations outside of a verification and validation context,
consider disabling run-time diagnostics.

Rationale Improve robustness of design.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for compatibility”

See Also “Diagnostics Pane: Compatibility” in the Simulink documentation

Last Changed R2012b

5-13

5 Configuration Parameter Considerations

hisl_0302: Configuration Parameters > Diagnostics >
Data Validity > Parameters

ID: Title hisl_0302: Configuration Parameters > Diagnostics > Data Validity
>Parameters

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of the
Data Validity > Parameters section to:

Compile-Time Detect downcast> error

Detect precision loss> error

Run-Time Detect overflow> error

Detect underflow> error

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation speed.
For simulations outside of a verification and validation context, consider
disabling run-time diagnostics.

Rationale Improve robustness of design.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for parameters”

See Also “Diagnostics Pane: Data Validity” in the Simulink documentation

Last Changed R2012b

5-14

Diagnostics

hisl_0303: Configuration Parameters > Diagnostics >
Data Validity > Merge block

ID: Title hisl_0303: Configuration Parameters > Diagnostics > Data Validity
> Merge block

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of the
Data Validity > Merge block section to:

Compile-Time Not applicable

Run-Time Detect multiple driving blocks executing at the
same time step > error

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation speed.
For simulations outside of a verification and validation context, consider
disabling run-time diagnostics.

Rationale Improve robustness of design.

See Also “Diagnostics Pane: Data Validity” in the Simulink documentation

Last Changed R2011b

5-15

5 Configuration Parameter Considerations

hisl_0304: Configuration Parameters > Diagnostics >
Data Validity > Model Initialization

ID: Title hisl_0304: Configuration Parameters > Diagnostics > Data Validity
> Model Initialization

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of the
Data Validity > Model Initialization section to:

Compile-Time Not applicable

Run-Time Underspecified initialization detection >
Simplified

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation
speed. For simulations outside of a verification and validation context,
consider disabling run-time diagnostics.

Rationale Improve robustness of design.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for model initialization”

See Also “Diagnostics Pane: Data Validity” in the Simulink documentation

Last Changed R2012b

5-16

Diagnostics

hisl_0305: Configuration Parameters > Diagnostics >
Data Validity > Debugging

ID: Title hisl_0305: Configuration Parameters > Diagnostics > Data Validity
>Debugging

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of the
Data Validity > Debugging section to:

Compile-Time Model Verification block enabling > Disable All

Run-Time Not applicable

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation speed.
For simulations outside of a verification and validation context, consider
disabling run-time diagnostics.

Rationale Improve robustness of design.

See Also “Diagnostics Pane: Data Validity” in the Simulink documentation

Last Changed R2011b

5-17

5 Configuration Parameter Considerations

hisl_0306: Configuration Parameters > Diagnostics
> Connectivity > Signals

ID: Title hisl_0306: Configuration Parameters > Diagnostics > Connectivity
> Signals

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of the
Connectivity > Signals section to:

Compile-Time Not applicable

Run-Time Signal label mismatch> error

Unconnected block input ports> error

Unconnected block output ports> error

Unconnected line> error

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation
speed. For simulations outside of a verification and validation context,
consider disabling run-time diagnostics.

Rationale Improve robustness of design.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for signal connectivity”

See Also “Diagnostics Pane: Connectivity” in the Simulink documentation

Last Changed R2012b

5-18

Diagnostics

hisl_0307: Configuration Parameters > Diagnostics >
Connectivity > Buses

ID: Title hisl_0307: Configuration Parameters > Diagnostics > Connectivity
> Buses

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of the
Connectivity > Buses section to:

Compile-Time Not applicable

Run-Time Unspecified bus object at root Outport block>
error

Element name mismatch > error

Mux blocks used to create bus signals > error

Non-bus signals treated as bus signals > error

Repair bus selection > Warn and repair

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation
speed. For simulations outside of a verification and validation context,
consider disabling run-time diagnostics.

Rationale Improve robustness of design.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for bus connectivity”

See Also “Diagnostics Pane: Connectivity” in the Simulink documentation

Last Changed R2012b

5-19

5 Configuration Parameter Considerations

hisl_0308: Configuration Parameters > Diagnostics >
Connectivity > Function calls

ID: Title hisl_0308: Configuration Parameters > Diagnostics > Connectivity
> Function calls

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of
the Connectivity > Function calls section to:

Compile-Time Invalid function-call connection > error

Run-Time Context—dependent inputs > Enable all

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation
speed. For simulations outside of a verification and validation context,
consider disabling run-time diagnostics.

Rationale Improve robustness of design.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings that apply to function-call
connectivity”

See Also “Diagnostics Pane: Connectivity” in the Simulink documentation

Last Changed R2012b

5-20

Diagnostics

hisl_0309: Configuration Parameters > Diagnostics
> Type Conversion

ID: Title hisl_0309: Configuration Parameters > Diagnostics > Type
Conversion

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of
the Type Conversion section to:

Compile-Time Vector / matrix block input conversion> error

Run-Time Not applicable

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation
speed. For simulations outside of a verification and validation context,
consider disabling run-time diagnostics.

Rationale Improve robustness of design.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for type conversions”

See Also “Diagnostics Pane: Type Conversion” in the Simulink documentation

Last Changed R2012b

5-21

5 Configuration Parameter Considerations

hisl_0310: Configuration Parameters > Diagnostics >
Model Referencing

ID: Title hisl_0310: Configuration Parameters > Diagnostics > Model
Referencing

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of
the Model Referencing section to:

Compile-Time Model block version mismatch > error

Port and parameter mismatch> error

Invalid root Inport / Outport block connection>
error

Unsupported data logging > error

Run-Time Not applicable

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation
speed. For simulations outside of a verification and validation context,
consider disabling run-time diagnostics.

Rationale Improve robustness of design.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related diagnostic settings for model referencing”

See Also “Diagnostics Pane: Model Referencing” in the Simulink documentation

Last Changed R2012b

5-22

Diagnostics

hisl_0311: Configuration Parameters > Diagnostics
> Stateflow

ID: Title hisl_0311: Configuration Parameters > Diagnostics > Stateflow

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the parameters of the
Stateflow section to:

Compile-Time Unexpected backtracking > error

Invalid input data access in chart initialization
> error

No unconditional default transitions > error

Transitions outside natural parent > error

Transition shadowing > error

Run-Time Not applicable

Note There are two categories of diagnostics — compile-time and run-time. Prior
to a simulation, compile-time diagnostics run once. During a simulation,
run-time diagnostics are active at every time step. Because run-time
diagnostics are active during a simulation, they impact the simulation
speed. For simulations outside of a verification and validation context,
consider disabling run-time diagnostics.

Rationale Improve robustness of design.

See Also “Diagnostics Pane: Stateflow” in the Simulink documentation

Last Changed R2012b

5-23

5 Configuration Parameter Considerations

Optimizations

In this section...

“hisl_0045: Configuration Parameters > Optimization > Implement logic
signals as Boolean data (vs. double)” on page 5-25

“hisl_0046: Configuration Parameters > Optimization > Block reduction”
on page 5-26

“hisl_0048: Configuration Parameters > Optimization > Application
lifespan (days)” on page 5-27

“hisl_0051: Configuration Parameters > Optimization > Signals and
Parameters > Loop unrolling threshold” on page 5-28

“hisl_0052: Configuration Parameters > Optimization > Data initialization”
on page 5-29

“hisl_0053: Configuration Parameters > Optimization > Remove code from
floating-point to integer conversions that wraps out-of-range values” on
page 5-30

“hisl_0054: Configuration Parameters > Optimization > Remove code that
protects against division arithmetic exceptions” on page 5-31

“hisl_0055: Prioritization of code generation objectives for high-integrity
systems” on page 5-32

5-24

Optimizations

hisl_0045: Configuration Parameters > Optimization
> Implement logic signals as Boolean data (vs.
double)

ID: Title hisl_0045: Configuration Parameters > Optimization > Implement
logic signals as Boolean data (vs. double)

To support unambiguous behavior when using logical operators, relational
operators, and the Combinatorial Logic block,

Description

A Select Implement logic signals as Boolean data (vs. double) in
the Optimization pane of the Configuration Parameters dialog box.

Notes Selecting the Implement logic signals as Boolean data (vs. double)
parameter, enables Boolean type checking, which produces an error when
blocks that prefer Boolean inputs connect to double signals. This checking
results in generating code that requires less memory.

Rationale A Avoid ambiguous model behavior and optimize memory for generated
code.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related optimization settings”

References • IEC 61508-3, Table A.3 (2) ’Strongly typed programming language’

• ISO 26262-6, Table 1 (c) ’Enforcement of strong typing’

• EN 50128, Table A.4 (8) ’Strongly Typed Programming Language’

• DO-331, MB.6.3.1.e ’High-level requirements conform to standards’
DO-331, MB.6.3,2.e ’Low-level requirements conform to standards’

• MISRA-C:2004, Rule 12.6

Last Changed R2013b

5-25

5 Configuration Parameter Considerations

hisl_0046: Configuration Parameters > Optimization
> Block reduction

ID: Title hisl_0046: Configuration Parameters > Optimization > Block
reduction

Description To support unambiguous presentation of the generated code and support
traceability between a model and generated code,

A Clear the Block reduction parameter on the Optimization pane
of the Configuration Parameters dialog box.

Notes Selecting Block reductionmight optimize blocks out of the code generated
for a model. This results in requirements without associated code and
violates traceability objectives.

Rationale A Support unambiguous presentation of generated code.

A Support traceability between a model and generated code.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related optimization settings”

References • IEC 61508-3, Clauses 7.4.7.2, 7.4.8.3, and 7.7.2.8 which require to
demonstrate that no unintended functionality has been introduced

• DO-331, Section MB.6.3.4.e ‘Source code is traceable to low-level
requirements’

See Also “Block reduction” in the Simulink documentation

Last Changed R2012b

5-26

Optimizations

hisl_0048: Configuration Parameters > Optimization
> Application lifespan (days)

ID: Title hisl_0048: Configuration Parameters > Optimization > Application
lifespan (days)

To support the robustness of systems that run continuously, in the
Configuration Parameters dialog box, on the Optimization pane:

Description

A Set Application lifespan (days) to inf.

Notes Embedded applications might run continuously. Do not assume a limited
lifespan for timers and counters. . When you set Application lifespan
(days) to inf, the simulation time is less than the application lifespan.

Rationale A Support robustness of systems that run continuously.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related optimization settings”

References • IEC 61508-3, Table A.4 (3) ’Defensive Programming’

• ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.3 (1) ’Defensive Programming’

• DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

See Also • “Application lifespan (days)” in the Simulink documentation

• “hisl_0040: Configuration Parameters > Solver > Simulation time” on
page 5-3

Last Changed R2013b

5-27

5 Configuration Parameter Considerations

hisl_0051: Configuration Parameters > Optimization
> Signals and Parameters > Loop unrolling threshold

ID: Title hisl_0051: Configuration Parameters > Optimization > Signals and
Parameters > Loop unrolling threshold

To support unambiguous code, set the minimum signal or parameter width
for generating a for loop. In the Configuration Parameters dialog box, on
the Optimization > Signals and Parameters pane,

A Set Loop unrolling threshold to 2 or greater.

Description

B If Pack Boolean data into bitfields is selected, set Bitfield
declarator type specifier to uint_T.

Notes The Loop unrolling threshold parameter specifies the array size at
which the code generator begins to use a for loop, instead of separate
assignment statements, to assign values to the elements of a signal or
parameter array. The default value is 5.

Rationale A Support unambiguous generated code.

References • IEC 61508-3, Table A.3 (3) ’Language Subset’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’

• EN 50128, Table A.4 (11) ’Language Subset’

• MISRA-C:2004, Rule 6.4

See Also “Loop unrolling threshold” in the Simulink documentation

Last Changed R2013b

5-28

Optimizations

hisl_0052: Configuration Parameters > Optimization
> Data initialization

ID: Title hisl_0052: Configuration Parameters > Optimization > Data
initialization

To support complete definition of data and initialize internal and
external data to zero, in the Configuration Parameters dialog box, on the
Optimization pane,

A Clear Remove root level I/O zero initialization.

Description

B Clear Remove internal data zero initialization.

Note Explicitly initialize all variables. If the run-time environment of the target
system provides mechanisms to initialize all I/O and state variables,
consider using the initialization of the target as an alternative to the
suggested settings.

Rationale A, B Support fully defined data in generated code.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related optimization settings”

References • IEC 61508-3, Table A.4 (3) ’Defensive Programming’

• ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.3 (1) ’Defensive Programming’

• MISRA-C:2004, Rule 9.1

• DO-331, Section MB.6.3.3.b ’Software architecture is consistent’

See Also Information about the following parameters in the Simulink documentation:

• “Remove root level I/O zero initialization”

• “Remove internal data zero initialization”

Last Changed R2013b

5-29

5 Configuration Parameter Considerations

hisl_0053: Configuration Parameters > Optimization
> Remove code from floating-point to integer
conversions that wraps out-of-range values

ID: Title hisl_0053: Configuration Parameters > Optimization > Remove
code from floating-point to integer conversions that wraps
out-of-range values

To support verifiable code, In the Configuration Parameters dialog box,
on the Optimization pane,

Description

A Consider selecting Remove code from floating-point to integer
conversions that wraps out-of-range values.

Notes Avoid overflows as opposed to handling them with wrapper code. For
blocks that have the parameter Saturate on overflow cleared, clearing
Remove code from floating-point to integer conversions that wraps
out-of-range values might add code that wraps out of range values,
resulting in unreachable code that cannot be tested.

Rationale A Support generation of code that can be verified.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related optimization settings”

References • IEC 61508-3, Table A.4 (3) ’Defensive Programming’

• ISO 26262-6, Table 1 (d) ’Use of defensive implementation techniques’

• EN 50128, Table A.3 (1) ’Defensive Programming’

• MISRA-C:2004, Rule 14.1

• DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

See Also “Remove code from floating-point to integer conversions that wraps
out-of-range values” in the Simulink documentation

Last Changed R2013b

5-30

Optimizations

hisl_0054: Configuration Parameters > Optimization
> Remove code that protects against division
arithmetic exceptions

ID: Title hisl_0054: Configuration Parameters > Optimization > Remove
code that protects against division arithmetic exceptions

To support the robustness of the operations, in the Configuration
Parameters dialog box, on the Optimization pane,

Description

A Clear Remove code that protects against division arithmetic
exceptions.

Note Avoid division-by-zero exceptions. If you clear Remove code that
protects against division arithmetic exceptions, the code generator
produces code that guards against division by zero for fixed-point data.

Rationale A Protect against divide-by-zero exceptions for fixed-point code.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > “Check
safety-related optimization settings”

References • IEC 61508-3, Table A.3 (3) ’Language Subset’
IEC 61508-3 Table A.4 (3) ’Defensive Programming’

• ISO 26262-6, Table 1(b) ’Use of language subsets’
ISO 26262-6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

• MISRA-C:2004, Rule 21.1

• DO-331, Section MB.6.3.1.g ’Algorithms are accurate’
DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

See Also “Remove code that protects against division arithmetic exceptions” in the
Simulink documentation

Last Changed R2013b

5-31

5 Configuration Parameter Considerations

hisl_0055: Prioritization of code generation
objectives for high-integrity systems

ID: Title hisl_0055: Prioritized configuration objectives for high-integrity
systems

Prioritize objectives for high-integrity systems using the Code Generation
Advisor by:

A Assigning the highest priority to the safety precaution objectives
(Safety Precaution and Traceability)

Description

B Configuring the Code Generation Advisor to run before generating
code by setting Check model before generating code to On
(proceed with warnings) or On (stop for warnings).

Notes Model configuration parameters provide control over many aspects of
generated code. The prioritization of objectives specifies how configuration
parameters are set when conflicts between objectives occur.

Including the ROM, RAM, and Execution efficiency objectives with a lower
priority in the list enables efficiency optimizations that do not conflict with
Safety precautions and Traceability in the active configuration.

Review the resulting parameter configurations to verify that safety
requirements are met.

Rationale A, B When you use the Code Generation Advisor, configuration
parameters conform to the objectives that you want and they are
consistently enforced.

References • DO-331, Section MB.6.3.4.e ’Source code is traceable to low-level
requirements’

• IEC61508–3, Table A.3 (3) ’Language Subset’
IEC 61508–3, Table A.4 (3) ’Defensive Programing’

• ISO 26262–6, Table 1(b) ’Use of language subsets’
ISO 26262–6, Table 1(d) ’Use of defensive implementation techniques’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.3 (1) ’Defensive Programming’

5-32

Optimizations

ID: Title hisl_0055: Prioritized configuration objectives for high-integrity
systems

See also • “Set Objectives — Code Generation Advisor Dialog Box”

• “Manage a Configuration Set”

• “cgsl_0301: Prioritization of code generation objectives for code efficiency”

Last Changed R2013b

5-33

5 Configuration Parameter Considerations

5-34

6

MISRA-C:2004 Compliance
Considerations

• “Modeling Style” on page 6-2

• “Block Usage” on page 6-17

• “Configuration Settings” on page 6-22

• “Stateflow Chart Considerations” on page 6-26

• “System Level” on page 6-37

6 MISRA-C:2004 Compliance Considerations

Modeling Style

In this section...

“hisl_0061: Unique identifiers for clarity” on page 6-3

“hisl_0062: Global variables in graphical functions” on page 6-6

“hisl_0063: Length of user-defined function names to improve
MISRA-C:2004 compliance” on page 6-9

“hisl_0064: Length of user-defined type object names to improve
MISRA-C:2004 compliance” on page 6-10

“hisl_0065: Length of signal and parameter names to improve
MISRA-C:2004 compliance” on page 6-11

“hisl_0201: Define reserved keywords to improve MISRA-C:2004
compliance” on page 6-12

“hisl_0202: Use of data conversion blocks to improve MISRA-C:2004
compliance” on page 6-13

6-2

Modeling Style

hisl_0061: Unique identifiers for clarity

ID: Title hisl_0061: Unique identifiers for clarity

When developing a model,

A Use unique identifiers for Simulink signals.

Description

B Define unique identifiers across multiple scopes within a chart.

Notes The code generator automatically resolves conflicts between identifiers
so that symbols in the generated code are unique. The process is called
name mangling.

Rationale A, B Improve readability of a graphical model and mapping between
identifiers in the model and generated code.

References • MISRA-C: 2004 5.6

• DO-331, Section MB.6.3.2.b ’Low-level requirements are accurate and
consistent’

• IEC 61508–3, Table A.3 (3) ’Language subset’
IEC 61508–3, Table A.4 (5) ’Design and coding standards’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (e) ’Use of established design principles’
ISO 26262-6, Table 1 (h) ’Use of naming conventions’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.12 (1) ’Coding Standard’

See Also “Code Appearance” in the Simulink Coder™ documentation

Last Changed R2013b

6-3

6 MISRA-C:2004 Compliance Considerations

ID: Title hisl_0061: Unique identifiers for clarity

In the following example, two states use identifier IntCounter.

The identifier IntCounter is defined for two states, Scope_1 and Scope_2.

Not Recommended

Examples

To clarify the model, create unique identifiers—for example,IntCounter_S1
and IntCounter_S2—or define IntCounter at the parent level.

6-4

Modeling Style

ID: Title hisl_0061: Unique identifiers for clarity

Recommended

6-5

6 MISRA-C:2004 Compliance Considerations

hisl_0062: Global variables in graphical functions

ID: Title hisl_0062: Global variables in graphical functions

For data with a global scope used in a functionDescription

A Do not use the data in the calling expression if a value is assigned to the
data in that function.

Rationale A Enhance readability of a model by removing ambiguity in the values of
global variables.

References • IEC 61508–3, Table A.3 (3) ’Language subset’
IEC 61508–3, Table A.4 (4) ’Modular approach’
IEC 61508–3, A.4 (5) ’Design and coding standards’

• ISO 26262-6, Table 1 (b) ’Use of language subsets’
ISO 26262-6, Table 1 (f) ’Use of unambiguous graphical representation’
ISO 26262-6, Table 1 (h) ’Use of naming conventions’

• EN 50128, Table A.4 (11) ’Language Subset’
EN 50128, Table A.12 (1) ’Coding Standard’
EN 50128, Table A.12 (2) ’Coding Style Guide’

• DO-331, Section MB.6.3.2.g ’Algorithms are accurate’

• MISRA-C: 2004 12.2
MISRA-C: 2004 12.4

Last
Changed

R2013b

Examples The basic expression is

Y = f(U) + G

where in the function G is assigned a value. This modeling pattern is realized:

In a... By Using...

Model Data stores

Stateflow chart Functions

MATLAB code Subfunctions

In the following example, the function GlobalOperator overwrites the initial
value of G_1,

6-6

Modeling Style

static real_T GlobalOperator_1(real_T U_1)
{

real_T Y_1;

/* Rreturns Y and modifies the global G_1 */
Y_1 = sin(U_1);
DWork.G_1 = -Y_1;
return Y_1;

}

In the next example, the function uses the initial value of 1 for global variable G_2
before the chart tries to assign the variable another value. The generated code
omits the assignment of G_2 to negative Y_2. (If the chart uses G_2 at a later point,
the chart uses the updated value of negative Y_2.)

6-7

6 MISRA-C:2004 Compliance Considerations

static real_T GlobalOperator_2(real_T U_2)
{

real_T Y_2;

/* Returns Y and modifies the global G */
Y_2 =sin(U_2);
DWork.G_2 = -Y_2;
return Y_2;

}

Code generator behavior is consistent and predictable.

6-8

Modeling Style

hisl_0063: Length of user-defined function names to
improve MISRA-C:2004 compliance

ID: Title hisl_0063: Length of user-defined function names to improve
MISRA-C:2004 compliance

To improve MISRA-C:2004 compliance of the generated code when working
with Subsystem blocks with the block parameter Function name options
set to User specified:

A Limit the length of data object names to 31 characters or fewer.

Description

For this rule, Subsystem blocks include standard Simulink Subsystems,
MATLAB Function blocks, and Stateflow blocks.

Rationale A Function names longer than 31 characters might result in a
MISRA-C:2004 violation.

References • MISRA-C:2004 Rule 5.1

Prerequisites “hisl_0060: Configuration parameters that improve MISRA-C:2004
compliance”

Last Changed R2011a

6-9

6 MISRA-C:2004 Compliance Considerations

hisl_0064: Length of user-defined type object names
to improve MISRA-C:2004 compliance

ID: Title hisl_0064: Length of user-defined type object names to improve
MISRA-C:2004 compliance

Description To improve MISRA-C:2004 compliance of the generated code, limit the length
of data object names to 31 characters or fewer for:
• Simulink.AliasType

• Simulink.NumericType

• Simulink.Variant

• Simulink.Bus

• Simulink.BusElement

• Simulink.IntEnumType

Rationale The length of the type definitions in the generated code name might result in
a MISRA-C:2004 violation.

References • MISRA-C:2004 Rule 5.1

Prerequisites “hisl_0060: Configuration parameters that improve MISRA-C:2004
compliance”

Last Changed R2011a

6-10

Modeling Style

hisl_0065: Length of signal and parameter names to
improve MISRA-C:2004 compliance

ID: Title hisl_0065: Length of signal and parameter names to improve
MISRA-C:2004 compliance

Description To improve MISRA-C:2004 compliance of the generated code, limit the
length of signal and parameter names to 31 characters or fewer when
using any of the following storage classes:
• Exported global

• Imported Extern

• Imported Extern Pointer

• Custom storage class

Rationale The length of the signal and parameter name might result in a
MISRA-C:2004 violation.

References • MISRA-C:2004 Rule 5.1

Prerequisites “hisl_0060: Configuration parameters that improve MISRA-C:2004
compliance”

Last Changed R2011a

6-11

6 MISRA-C:2004 Compliance Considerations

hisl_0201: Define reserved keywords to improve
MISRA-C:2004 compliance

ID: Title hisl_0201: Define reserved keywords to improve MISRA-C:2004
compliance

To improve MISRA-C: 2004 compliance of the generated code, define
reserved keywords to prevent identifier clashes within the project
namespace.

A In the Configuration Parameters dialog box, on the Simulation
Target > Symbols > Reserved names pane, define reserved
identifiers.

Description

B Use a consistent set of reserved identifiers for all models.

Notes Simulink Coder checks models for standard C language key words. Expand
the list of reserved identifiers to include project specific identifiers.
Examples include target-specific clashes, standard and custom library
clashes, and other identified clashes.

Rationale Improve MISRA-C:2004 compliance of the generated code.

See Also • “Simulation Target Pane: Symbols” in the Simulink documentation

• “Reserved Keywords” in the Simulink Coder documentation

• “Reserved names” in the Simulink Coder documentation

References MISRA-C:2004, Rule 20.2

Last Changed R2011b

6-12

Modeling Style

hisl_0202: Use of data conversion blocks to improve
MISRA-C:2004 compliance

ID: Title hisl_0202: Use of data conversion blocks to improve MISRA-C:2004
compliance

Description To improve MISRA-C:2004 compliance of generated code, insert a data type
conversion block when using signals of type single (real32_T) as inputs to
the following blocks:

• Math

• Trigonometry

• Sqrt

The data type conversion block to changes the data type to double (real_T)

Rationale Improve MISRA-C:2004 compliance of the generated code.

Notes The function prototypes for many math functions require an input of type
double. To accommodate the function prototype, you can add a data type
conversion block. As an alternative to the data type conversion block, you
could define a new function interface using the Target Function Library
(TFL).

6-13

6 MISRA-C:2004 Compliance Considerations

ID: Title hisl_0202: Use of data conversion blocks to improve MISRA-C:2004
compliance

References • MISRA-C: 2004 Rule 10.2

6-14

Modeling Style

ID: Title hisl_0202: Use of data conversion blocks to improve MISRA-C:2004
compliance

Last Changed R2012a

Example

Recommended

6-15

6 MISRA-C:2004 Compliance Considerations

ID: Title hisl_0202: Use of data conversion blocks to improve MISRA-C:2004
compliance

Add a data type conversion block to the input signal of the block. Convert
the output signal back to single.

6-16

Block Usage

Block Usage

In this section...

“hisl_0020: Blocks not recommended for MISRA-C:2004 compliance” on
page 6-17

“hisl_0101: Avoid invariant comparison operations to improve
MISRA-C:2004 compliance” on page 6-18

“hisl_0102: Data type of loop control variables to improve MISRA-C:2004
compliance” on page 6-21

hisl_0020: Blocks not recommended for
MISRA-C:2004 compliance

ID: Title hisl_0020: Blocks not recommended for MISRA-C:2004 compliance

To improve MISRA-C:2004 compliance of the generated code,

A Use only blocks that support code generation, as documented in the
Simulink Block Support Table

Description

B Do not use blocks that are listed as “Not recommended for production
code” in the Simulink Block Support Table

Notes If you follow this and other modeling guidelines, you increase the likelihood
of generating code that complies with the MISRA-C:2004 standard.

Choose Simulink Help > Block Support Table > Simulink to view the
block support table.

Blocks with the footnote (4) in the Block Support Table are classified as
“Not Recommended for production code.”

Rationale A,B Improve MISRA-C:2004 compliance of the generated code.

Model Advisor
Checks

By Product > Embedded Coder > “Check for blocks not
recommended for MISRA-C:2004 compliance”

References MISRA-C:2004

Last Changed R2011a

6-17

6 MISRA-C:2004 Compliance Considerations

hisl_0101: Avoid invariant comparison operations to
improve MISRA-C:2004 compliance

ID: Title hisl_0101: Avoid invariant comparison operations to improve
MISRA-C:2004 compliance

Description To improve MISRA-C:2004 compliance of generated code, avoid comparison
operations with invariant results. Comparison operations are performed by
the following blocks:

• If

• Logic

• Relational Operator

• Switch

• Switch Case

• Compare to Constant

Rationale Improve MISRA-C:2004 compliance of the generated code.

References • MISRA-C: 2004 Rule 13.7

• MISRA-C: 2004 Rule 14.1

Last Changed R2012a

Example Invariant comparisons can occur in simple or compound comparison
operations. In compound comparison operations, the individual components
can be variable when the full calculation is invariant.
Simple: A uint8 is always greater than or equal to 0.

Simple: A uint8 cannot have a value greater then 256

6-18

Block Usage

ID: Title hisl_0101: Avoid invariant comparison operations to improve
MISRA-C:2004 compliance

Compound: The comparison operations are mutually exclusive

Stateflow:

6-19

6 MISRA-C:2004 Compliance Considerations

ID: Title hisl_0101: Avoid invariant comparison operations to improve
MISRA-C:2004 compliance

6-20

Block Usage

hisl_0102: Data type of loop control variables to
improve MISRA-C:2004 compliance

ID: Title hisl_0102: Data type of loop control variables to improve
MISRA-C:2004 compliance

Description
To improve MISRA-C:2004 compliance of generated code, use integer data
type for variables that are used as loop control counter variables in:

• For and while loops constructed in Stateflow and MATLAB.

• While Iterator and For Iterator blocks.

Rationale Improve MISRA-C:2004 compliance of the generated code.

References • MISRA-C: 2004 Rule 13.7

Last Changed R2012a

6-21

6 MISRA-C:2004 Compliance Considerations

Configuration Settings

In this section...

“hisl_0060: Configuration parameters that improve MISRA-C:2004
compliance” on page 6-22

“hisl_0312: Specify target specific configuration parameters to improve
MISRA-C:2004 compliance” on page 6-24

“hisl_0313: Selection of bitfield data types to improve MISRA-C:2004
compliance” on page 6-25

hisl_0060: Configuration parameters that improve
MISRA-C:2004 compliance

ID: Title hisl_0060: Configuration parameters that improve MISRA-C:2004
compliance

To improve MISRA-C:2004 compliance of the generated code,Description

A Set the following model configuration parameters as specified:

Pane / Configuration
Parameter

Value

Diagnostics > Data Validity

Model Verification block
enabling

Disable All

Code Generation pane

System target file ERT-based target

Code Generation > Interface
pane

Support: non-finite
numbers

Cleared (off)

Support: continuous time Cleared (off)

Support: non-inlined
S-functions

Cleared (off)

6-22

Configuration Settings

ID: Title hisl_0060: Configuration parameters that improve MISRA-C:2004
compliance

MAT-file logging Cleared (off)

Standard math library C89/C90 (ANSI)

Code replacement library None

Code Generation > Code
Style pane

Parenthesis level Maximum (Specify
precedence with
parentheses)

Code Generation > Symbols
pane

Maximum identifier length 31

Note If you follow this and other modeling guidelines, you increase the likelihood
of generating code that complies with the MISRA-C:2004 standard.

Rationale A Improve MISRA-C:2004 compliance of the generated code.

Model Advisor
Checks

By Product > Embedded Coder > “Check configuration parameters
for MISRA-C:2004 compliance”

References • MISRA-C:2004

Last Changed R2011a

6-23

6 MISRA-C:2004 Compliance Considerations

hisl_0312: Specify target specific configuration
parameters to improve MISRA-C:2004 compliance

ID: Title hisl_0312: Specify target specific configuration parameters to
improve MISRA-C:2004 compliance

To improve MISRA-C:2004 compliance of generated code, use a consistent
set of model parameters. The parameters include, but are not limited to:

A Explicitly setting model character encoding using the
slCharacterEncoding(encoding) function.

B In the Configuration Parameters dialog box, explicitly selecting a
Hardware Implementation > Production hardware > Signed
integer division rounds to: parameter.

Description

C If complex numbers are not required, deselecting the Code
Generation > Interface > Software Environment > complex
numbers parameter.

Notes Base the selection of the integer division method on the target hardware
and compiler. When available, in the Configuration Parameters dialog box,
specify both of these parameters:
• Hardware Implementation > Production hardware > Device
vendor

• Hardware Implementation > Production hardware > Device type

Rationale Improve MISRA-C:2004 compliance of the generated code.

See Also • “Configure Test and Production Target Hardware” in the Simulink
Coder documentation.

• slCharacterEncoding in the Simulink documentation.

• “hisl_0060: Configuration parameters that improve MISRA-C:2004
compliance”

References • MISRA-C: 2004 Rule 3.2

• MISRA-C: 2004 Rule 3.3

• MISRA-C: 2004 Rule 5.7

Last Changed R2012a

6-24

Configuration Settings

hisl_0313: Selection of bitfield data types to improve
MISRA-C:2004 compliance

ID: Title hisl_0313: Selection of bitfield data types to improve MISRA-C:2004
compliance

Description To improve MISRA-C:2004 compliance of generated code when
bitfields are used, in the Configuration Parameters dialog box, set
Optimization > Signals and Parameters > Code generation > Bitfield
declarator type specifier to uint_T.

Rationale Improve MISRA-C:2004 compliance of the generated code.

Notes Set Bitfield declarator type specifier to uint_T if any of the following
Optimization parameters are enabled:
• Optimization > Signals and Parameters > Code generation > Pack
Boolean data into bitfields

• Optimization > Stateflow > Code generation > Use bitsets for
storing state configuration

• Optimization > Stateflow > Code generation > Use bitsets for
storing Boolean data

See Also • “Optimization Pane: Signals and Parameters” in the Simulink
documentation.

References • MISRA-C: 2004 Rule 6.4

Last Changed R2012a

6-25

6 MISRA-C:2004 Compliance Considerations

Stateflow Chart Considerations

In this section...

“hisf_0064: Shift operations for Stateflow data to improve MISRA-C:2004
compliance” on page 6-27

“hisf_0065: Type cast operations in Stateflow to improve MISRA-C:2004
compliance” on page 6-29

“hisf_0211: Protect against use of unary operators in Stateflow Charts to
improve MISRA-C:2004 compliance” on page 6-31

“hisf_0212: Data type of Stateflow for loop control variables to improve
MISRA-C: 2004 compliance” on page 6-33

“hisf_0213: Protect against divide-by-zero calculations in Stateflow charts
to improve MISRA-C: 2004 compliance” on page 6-34

6-26

Stateflow Chart Considerations

hisf_0064: Shift operations for Stateflow data to
improve MISRA-C:2004 compliance

ID: Title hisf_0064: Shift operations for Stateflow data to improve
MISRA-C:2004 compliance

To improve MISRA-C:2004 compliance of the generated code with Stateflow
bit-shifting operations, do not perform:

A Right-shift operations greater than the bit-width of the input type,
or by a negative value.

Description

B Left-shift operations greater than the bit-width of the output type, or
by a negative value.

Note If you follow this and other modeling guidelines, you increase the likelihood
of generating code that complies with the MISRA-C:2004 standard.

Rationale A,B To avoid shift operations in the generated code that might be a
MISRA-C:2004 violation.

References • MISRA-C:2004 Rule 12.8

Prerequisites “hisl_0060: Configuration parameters that improve MISRA-C:2004
compliance”

Last Changed R2011a

Example In the first equation, shifting 17 bits to the right pushes data stored in
a 16–bit word out of range. The resulting output is zero. In the second
equation, shifting the data 33 bits pushes data beyond the range of storage
for a 32–bit word. Again, the resulting output is zero.

6-27

6 MISRA-C:2004 Compliance Considerations

ID: Title hisf_0064: Shift operations for Stateflow data to improve
MISRA-C:2004 compliance

6-28

Stateflow Chart Considerations

hisf_0065: Type cast operations in Stateflow to
improve MISRA-C:2004 compliance

ID: Title hisf_0065: Type cast operations in Stateflow to improve
MISRA-C:2004 compliance

To improve MISRA-C:2004 compliance of the generated code, protect
against Stateflow casting integer and fixed-point calculations to wider data
types than the input data types by:

A Explicitly type casting the calculations

Description

B Using the := notation in Stateflow

Note If you follow this and other modeling guidelines, you increase the likelihood
of generating code that complies with the MISRA-C:2004 standard.

Rationale A,B To avoid shift operations in the generated code that might be a
MISRA-C:2004 violation.

References • MISRA-C:2004 Rule 10.1

• MISRA-C:2004 Rule 10.4

Prerequisites “hisl_0060: Configuration parameters that improve MISRA-C:2004
compliance”

Last Changed R2011a

Example The example shows the default behavior and both methods of controlling
the casting (explicitly type casting and using the colon operator).

6-29

6 MISRA-C:2004 Compliance Considerations

ID: Title hisf_0065: Type cast operations in Stateflow to improve
MISRA-C:2004 compliance

6-30

Stateflow Chart Considerations

hisf_0211: Protect against use of unary operators
in Stateflow Charts to improve MISRA-C:2004
compliance

ID: Title hisf_0211: Protect against use of unary operators in Stateflow
Charts to improve MISRA-C:2004 compliance

To improve MISRA-C:2004 compliance of the generated code:Description

A Do not use unary minus operators on unsigned data types

Note The Stateflow action language does not restrict the use of unary minus
operators on unsigned expressions.

Rationale A Improve MISRA-C:2004 compliance of the generated code.

References • MISRA-C:2004 Rule 12.9

Last Changed R2011b

Example Not Recommended:

Applying the unary minus operator to the unsigned integer results in a
MISRA-C:2004 Rule 12.9 violation. The resulting output wraps around
the maximum value of 256 (uint8). In this example, if the input variable

6-31

6 MISRA-C:2004 Compliance Considerations

ID: Title hisf_0211: Protect against use of unary operators in Stateflow
Charts to improve MISRA-C:2004 compliance

In_SF_uint8 equals 7, then the output variable varOut_uint8 equals 256 –
(7 * 3), or 235. The simulation and code generation values are in agreement.

6-32

Stateflow Chart Considerations

hisf_0212: Data type of Stateflow for loop control
variables to improve MISRA-C: 2004 compliance

ID: Title hisf_0212: Data type of Stateflow for loop control variables to
improve MISRA-C: 2004 compliance

To improve MISRA-C:2004 compliance of the generated code:Description

A Explicitly select an integer data type as the control variable in a
Stateflow for loop

Note The default data type in Simulink and Stateflow is double. Explicitly select
an integer data type.

Rationale A Improve MISRA-C:2004 compliance of the generated code

References • MISRA-C:2004 Rule 13.4

Last Changed R2011b

6-33

6 MISRA-C:2004 Compliance Considerations

hisf_0213: Protect against divide-by-zero
calculations in Stateflow charts to improve MISRA-C:
2004 compliance

ID: Title hisf_0213: Protect against divide-by-zero calculations in Stateflow
charts to improve MISRA-C: 2004 compliance

To improve MISRA-C:2004 compliance of the generated code for floating
point and integer-based operations, do one of the following:

A Perform static analysis of the model to prove that division by zero
is not possible

B Provide run-time error checking in the generated C code by explicitly
modeling the error checking in Stateflow

C Modify the code generation process using Code Replacement
Libraries (CRLs) to protect against division by zero

Description

D For integer-based operations, in the Configuration Parameters
dialog box, on the Optimization pane, clear Remove code that
protects against division arithmetic exceptions

Note Using run-time error checking introduces additional computational and
memory overhead in the generated code. It is preferable to use static
analysis tools to limit errors in the generated code. You can use Simulink
Design Verifier or Polyspace® Code Prover™ to perform the static analysis.

If static analysis determines that sections of the code can have a division
by zero, then add run-time protection into that section of the model (see
example). Using a modified CRL or selecting the parameter Remove code
that protects against division arithmetic exceptions protects division
operations against divide-by-zero operations. However, this action does
introduce additional computational and memory overhead.

Use only one of the run-time protections (B, C or D) in a model. Using more
than one option can result in redundant protection operations.

Rationale A,B,
C,D

Improve MISRA-C:2004 compliance of the generated code

References • MISRA-C:2004 Rule 21.1

6-34

Stateflow Chart Considerations

ID: Title hisf_0213: Protect against divide-by-zero calculations in Stateflow
charts to improve MISRA-C: 2004 compliance

See Also • “Introduction to Code Replacement Libraries”

• “hisl_0002: Usage of Math Function blocks (rem and reciprocal)”

• “hisl_0005: Usage of Product blocks”

• “hisl_0054: Configuration Parameters > Optimization > Remove code
that protects against division arithmetic exceptions”

Last Changed R2011b

Example Run-time divide by zero protection can be realized using a graphical
function. Unique functions should be provided for each data type.

6-35

6 MISRA-C:2004 Compliance Considerations

ID: Title hisf_0213: Protect against divide-by-zero calculations in Stateflow
charts to improve MISRA-C: 2004 compliance

6-36

System Level

System Level

In this section...

“hisl_0401: Encapsulation of code to improve MISRA-C:2004 compliance”
on page 6-37

“hisl_0402: Use of custom #pragma to improve MISRA-C:2004 compliance”
on page 6-38

“hisl_0403: Use of char data type improve MISRA-C:2004 compliance” on
page 6-39

hisl_0401: Encapsulation of code to improve
MISRA-C:2004 compliance

ID: Title hisl_0401: Encapsulation of code to improve MISRA-C:2004
compliance

Description To improve the MISRA-C:2004 compliance of the generated code, encapsulate
manually inserted code. This code includes, but is not limited to, C, Fortran,
and assembly code.

Rationale Improve MISRA-C:2004 compliance of the generated code

See Also • “External Code Integration” in the Embedded Coder documentation.

• “External Code Integration” in the Simulink Coder documentation.

Notes Simulink provides multiple methods for integrating existing code. The user
is responsible for encapsulating the generated code.

Encapsulation can be defined as “the process of compartmentalizing the
elements of an abstraction that constitute its structure and behavior;
encapsulation serves to separate the contractual interface of an abstraction
and its implementation” a

References • MISRA-C: 2004 Rule 2.1

Last Changed R2012a

aBooch, Grady, R. Maksimchuk, M. Engle, B. Young, J. Conallen, K. Houston.
Object-Oriented Analysis and Design with Applications. 3rd ed. Boston, MA:
Addison-Wesley Professional, 2007.

6-37

6 MISRA-C:2004 Compliance Considerations

hisl_0402: Use of custom #pragma to improve
MISRA-C:2004 compliance

ID: Title hisl_0402: Use of custom #pragma to improve MISRA-C:2004
compliance

To improve the MISRA-C:2004 compliance of the generated code, document
user defined pragma. In the documentation, include:

A Memory range (start and stop address)

B Intended use

Description

C Justification for using a pragma

Rationale Improve MISRA-C:2004 compliance of the generated code

See Also • “About Memory Sections” in the Embedded Coder documentation.

• “Document Generated Code with Simulink Report Generator™” in the
Simulink Coder documentation.

Notes The Simulink Report Generator documents pragmas.

References • MISRA-C: 2004 Rule 3.4

Last Changed R2012a

6-38

System Level

hisl_0403: Use of char data type improve
MISRA-C:2004 compliance

ID: Title hisl_0403: Use of char data type to improve MISRA-C:2004
compliance

To improve the MISRA-C:2004 compliance of the generated code with
custom storage classes that use the Char data type, only use:

A Plain char type for character values.

Description

B Signed and unsigned char type for numeric values.

Rationale Improve MISRA-C:2004 compliance of the generated code.

See Also • “Custom Storage Classes” in the Embedded Coder documentation.

• “About Memory Sections” in the Embedded Coder documentation.

• “Document Generated Code with Simulink Report Generator” in the
Simulink Coder documentation.

References • MISRA-C: 2004 Rule 6.1

• MISRA-C: 2004 Rule 6.2

Last Changed R2012a

6-39

	toc
	Introduction
	Motivation
	Guideline Template
	Model Advisor Checks for High-Integrity Modeling Guidelines

	Simulink Block Considerations
	Math Operations
	hisl_0001: Usage of Abs block
	hisl_0002: Usage of Math Function blocks (rem and reciprocal)
	hisl_0003: Usage of Square Root blocks
	hisl_0028: Usage of Reciprocal Square Root blocks
	hisl_0004: Usage of Math Function blocks (natural logarithm and
	hisl_0005: Usage of Product blocks
	hisl_0029: Usage of Assignment blocks

	Ports & Subsystems
	hisl_0006: Usage of While Iterator blocks
	hisl_0007: Usage of While Iterator subsystems
	hisl_0008: Usage of For Iterator Blocks
	hisl_0009: Usage of For Iterator Subsystem blocks
	hisl_0010: Usage of If blocks and If Action Subsystem blocks
	hisl_0011: Usage of Switch Case blocks and Action Subsystem bloc
	hisl_0012: Usage of conditionally executed subsystems
	hisl_0024: Inport interface definition
	hisl_0025: Design min/max specification of input interfaces
	hisl_0026: Design min/max specification of output interfaces

	Signal Routing
	hisl_0013: Usage of data store blocks
	hisl_0015: Usage of Merge blocks
	hisl_0021: Consistent vector indexing method
	hisl_0022: Data type selection for index signals
	hisl_0023: Verification of model and subsystem variants

	Logic and Bit Operations
	hisl_0016: Usage of blocks that compute relational operators
	hisl_0017: Usage of blocks that compute relational operators (2)
	hisl_0018: Usage of Logical Operator block
	hisl_0019: Usage of Bitwise Operator block

	Stateflow Chart Considerations
	Chart Properties
	hisf_0001: Mealy and Moore semantics
	hisf_0002: User-specified state/transition execution order
	hisf_0009: Strong data typing (Simulink and Stateflow boundary)
	hisf_0011: Stateflow debugging settings

	Chart Architecture
	hisf_0003: Usage of bitwise operations
	hisf_0004: Usage of recursive behavior
	hisf_0007: Usage of junction conditions (maintaining mutual excl
	hisf_0010: Usage of transition paths (looping out of parent of s
	hisf_0012: Chart comments
	hisf_0013: Usage of transition paths (crossing parallel state bo
	hisf_0014: Usage of transition paths (passing through states)
	hisf_0015: Strong data typing (casting variables and parameters

	MATLAB Function and MATLAB Code Considerations
	MATLAB Functions
	himl_0001: Usage of standardized MATLAB function headers
	himl_0002: Strong data typing at MATLAB function boundaries
	himl_0003: Limitation of MATLAB function complexity
	himl_0005: Usage of global variables in MATLAB functions

	MATLAB Code
	himl_0004: MATLAB Code Analyzer recommendations for code generat
	himl_0006: MATLAB code if / elseif / else patterns
	himl_0007: MATLAB code switch / case / otherwise patterns
	himl_0008: MATLAB code relational operator data types
	himl_0009: MATLAB code with equal / not equal relational operato
	himl_0010: MATLAB code with logical operators and functions

	Configuration Parameter Considerations
	Solver
	hisl_0040: Configuration Parameters > Solver > Simulation time
	hisl_0041: Configuration Parameters > Solver > Solver options
	hisl_0042: Configuration Parameters > Solver > Tasking and sampl

	Diagnostics
	hisl_0043: Configuration Parameters > Diagnostics > Solver
	hisl_0044: Configuration Parameters > Diagnostics > Sample Time
	hisl_0301: Configuration Parameters > Diagnostics > Compatibilit
	hisl_0302: Configuration Parameters > Diagnostics > Data Validit
	hisl_0303: Configuration Parameters > Diagnostics > Data Validit
	hisl_0304: Configuration Parameters > Diagnostics > Data Validit
	hisl_0305: Configuration Parameters > Diagnostics > Data Validit
	hisl_0306: Configuration Parameters > Diagnostics > Connectivity
	hisl_0307: Configuration Parameters > Diagnostics > Connectivity
	hisl_0308: Configuration Parameters > Diagnostics > Connectivity
	hisl_0309: Configuration Parameters > Diagnostics > Type Convers
	hisl_0310: Configuration Parameters > Diagnostics > Model Refere
	hisl_0311: Configuration Parameters > Diagnostics > Stateflow

	Optimizations
	hisl_0045: Configuration Parameters > Optimization > Implement l
	hisl_0046: Configuration Parameters > Optimization > Block reduc
	hisl_0048: Configuration Parameters > Optimization > Application
	hisl_0051: Configuration Parameters > Optimization > Signals and
	hisl_0052: Configuration Parameters > Optimization > Data initia
	hisl_0053: Configuration Parameters > Optimization > Remove code
	hisl_0054: Configuration Parameters > Optimization > Remove code
	hisl_0055: Prioritization of code generation objectives for high

	MISRA-C:2004 Compliance Considerations
	Modeling Style
	hisl_0061: Unique identifiers for clarity
	hisl_0062: Global variables in graphical functions
	hisl_0063: Length of user-defined function names to improve MISR
	hisl_0064: Length of user-defined type object names to improve M
	hisl_0065: Length of signal and parameter names to improve MISRA
	hisl_0201: Define reserved keywords to improve MISRA-C:2004 comp
	hisl_0202: Use of data conversion blocks to improve MISRA-C:2004

	Block Usage
	hisl_0020: Blocks not recommended for MISRA-C:2004 compliance
	hisl_0101: Avoid invariant comparison operations to improve MISR
	hisl_0102: Data type of loop control variables to improve MISRA-

	Configuration Settings
	hisl_0060: Configuration parameters that improve MISRA-C:2004 co
	hisl_0312: Specify target specific configuration parameters to i
	hisl_0313: Selection of bitfield data types to improve MISRA-C:2

	Stateflow Chart Considerations
	hisf_0064: Shift operations for Stateflow data to improve MISRA-
	hisf_0065: Type cast operations in Stateflow to improve MISRA-C:
	hisf_0211: Protect against use of unary operators in Stateflow C
	hisf_0212: Data type of Stateflow for loop control variables to
	hisf_0213: Protect against divide-by-zero calculations in Statef

	System Level
	hisl_0401: Encapsulation of code to improve MISRA-C:2004 complia
	hisl_0402: Use of custom #pragma to improve MISRA-C:2004 complia
	hisl_0403: Use of char data type improve MISRA-C:2004 compliance

